PWM 整流器インバータシステムと マトリックスコンバータの比較

永吉 謙一*,伊東 淳一(長岡技術科学大学)

Comparison between PWM Rectifier & Inverter System and Matrix Converter. Ken-ichi Nagayoshi, Jun-ichi Itoh (Nagaoka University of Technology)

1. はじめに

マトリックスコンバータ(以下 MC と略す)は一般的に PWM 整流器とインバータを使った back to back 構成(以下 BTB と略す)に比べて高効率,省スペース化などの利点を 有し,両者の性能の比較を行った文献も存在する⁽¹⁾⁽²⁾。し かし,性能の比較は逆阻止 IGBT を用いて行っているもの がほとんどであり,従来の IGBT+FWD を用いた MC との 体積や損失の比較については明らかでない。MC は逆阻止 IGBT を使用することでその利点を伸ばすことが可能であ るが,現時点では入手が困難である。一方,IGBT + FWD の素子を用いた MC においても BTB に対し十分にその利 点を発揮することが可能であると考えられる。

本論文ではその検証を行うために,22[kW]程度の中容量 を前提として装置体積と損失の両面から検討を行い,設計 例を示した。まず BTB および MC について一般的と思わ れる設計手法から必要な各部品を実際の製品から選定し, それぞれの総合体積を求め,比較する。また,損失シミュ レーション⁽³⁾を導入してそれぞれの損失を求め,比較する。 その結果,従来形素子で MC を構成しても,BTB と比較し て体積が小さく,かつ高効率となることが確認できた。

2. 検証に用いる変換器の基本仕様

図1に今回検証で用いる BTB, 図2に MCの回路図を示 す。図2のように MCの素子は従来素子を組み合わせて使 用する。ただし本論文は従来素子による逆直列構成の 6inl 素子があることを前提としている。これは従来素子の逆直 列接続構成であれば従来の 6inl モジュール内の配線を変更 するだけで,比較的容易に製作が可能なためである。負荷 はモータの全負荷状態を模擬する RL 負荷を接続する。ま た電源側には高調波を抑制する入力フィルタを設ける。

表1は検証に用いる変換器の基本設定仕様である。

3. 各回路部品の選定方法

表 2 に,比較を行う際に選定した部品,図 4 に表 2 で挙 げた部品の体積比較結果を示す。BTB と比較して従来素子 を用いても MC は合計体積を半分以下とできることがわか った。特に BTB は動作上昇圧リアクトルが必要であり, それが総体積の半分を占めている。逆に,MC はモジュー ルとヒートシンクの体積が BTB に対して増加する。これ は,損失は MC の方が小さいものの,設置面積が必要になるためである。以下にそれぞれの部品の選定手順を示す。 <3.1> 半導体パワーモジュール

半導体パワーモジュールは,表 2 の項目"Power module" に示すように表 1 の仕様を満たす定格であるものを選定し, 従来システムで 2 個, MC で 3 個使用する。 <3.2> 入力 LC フィルタ"L", "C"

まず *L_i*を装置容量の 2[%]としてインダクタンスを求め, *C_i*は *L_i*と組み合わせた際にカットオフ周波数が 1[kHz]とな るよう容量を求めた。ここで MC は BTB に対して高周波 のリプル電流が多く流れるため,リプル電流に対して余裕 を持つよう同シリーズのものを3並列としている。 <3.3> 直流リンクキャパシタ"*C_{dc}*"(従来システムのみ) BTB の直流リンクキャパシタは,キャパシタに流れるリ

表1 比較に用いる変換器の基本設定 Table 1 Electrical specifications of converters for comparison

fuble 1. Eleculeur of	occilication.	of converters for	companioon
Input Voltage	200[V]		160[V]
Output Power	22[kW]	Motor Ratings	22[kW]
Carrier Frequency	10[kHz]		50[Hz]
Input Filter Cut-off Frequency	1[kHz]		
DC Link Voltage (Rec. & Inv. only)	350[V]		

プル電流をシミュレーションで求め,キャパシタのデータ シートよりそのリプル電流を許容できる値を設定した。 <3.4> 昇圧リアクトル"L_s"(従来システムのみ)

昇圧リアクトルは,装置容量の 3~5[%]とし,富士電機 製の 200[V]系列,22[kW] 昇圧用リアクトルを用いた。 <3.5> ダイオードクランプキャパシタ"*C*_{clamp}"(MC のみ)

*C*_{clamp}は、全しゃ断時に入力フィルタとモータの漏れインダクタンスに蓄えられたエネルギーを全て吸収できるものを選定した。ただしコンデンサに流れ込む電流は瞬間的ななので、コンデンサの許容リプル電流は10倍とした。< **<3.6>**ヒートシンク、冷却ファン

ヒートシンクは, 選定した個数のパワーモジュールが設 置可能な面積で, 次項の損失シミュレーションによる発生 熱に対して妥当なものを選定した。また冷却ファンについ ては, フィンに合った標準的なものを選定した。

4. 損失シミュレーションによる評価

*PSIM(Powersim Inc.)*により回路シミュレーションを行い スイッチ両端の電圧と電流より DLL ブロックを使って損 失を求め⁽³⁾,装置の損失とデバイスの最大上昇ジャンクシ ョン温度との比較を行った。

図 5 は電流一定で負荷力率を変動させた場合の BTB と MC の損失比較結果である。なお,負荷は力率 0.8 時にお いて 22[kW]となるよう設定した。BTB で 95.4%, MC で 96.8%の効率が得られており 1.4 ポイント改善されている。 低力率負荷においては BTB が低損失だが,力率が 0.4 を超 えると MC の方が少なくなる。出力電流の大きい低力率負 荷領域では BTB では整流器側の電流が減少し損失が少な くなるのに対し, MC では変換器内を流れる電流は負荷に 依存し,ほとんど同じとなることから有効電力が減った分 損失が多くなる。

図 6 は負荷の出力周波数とヒートシンク温度に対するジ ャンクション部分の上昇温度との関係である。負荷力率は 0.8 固定である。MC では各素子のジャンクション温度がア ンバランスするために最大温度となるものを選択したが, それを加味しても BTB は素子数が少ない分各スイッチの 負担が増えるため,全体的に MC の方が低くなる。特に低 い周波数領域では,インバータでは直流に近い電流が流れ るため発熱は増加するが,MC では低周波でも電源周波数 で分担する素子が切り替わるため,温度上昇は低くなる。

5. むすび

本論文では,設定した仕様を満たすデバイスを選定し, BTBと MC に必要な部品のそれぞれの体積を求めた。また 損失シミュレーションによって損失とジャンクション温度 の評価を行った。それらより,以下に示す結果を得た。 (1)必要部品の総体積は,直流リンクキャパシタや昇圧リア クトルが必要な BTB に対して, MC が 1/2 で済む。

(2)低力率負荷では BTB が低損失だが,負荷力率が高くなると MC の方が低損失となり,力率 0.8 時においては効率にして 1.4 ポイント MC の方が高くなる。

以上より,通常の IGBT+FWD を使用した MC でも従来の BTB に対して十分に利点を有するという結論に至った。

Table 2. Selected devices list.									
Part	Symbol	Calculate	Selected Device	Maximam	Needed	Number			
		Value		Ratings	BTB	MC			
Power	I		MITSUBISHI	600[V]	2	3			
Module			CM2001L-12NF	200[A]					
Input Filter	L_i	0.12[mH]	YASKAWA"R5A2018"	200[V] 90[A]	1	1			
	C _i	80[µF]	nichicon "EM251400D0UA9HP"	AC220[V]	6	1			
		90[µF]	nichicon "EM251300D0UA9HW'	AC220[V]		9			
DC-Link Capasitor	C_{dc}	18800[µF]	nichicon "NT series" 4700[µF]	400[V]	4				
Boost Inductor	L_s	0.19[mH]	Fuji "LR2-22C"	1.48[kVA] 85[A]	1				
Diode-clamp Capasitor	C_{clamp}	14.1[A]	nichicon "NT series" 3900[µF]	500[V] 14.1[A]	I	1			
Heat Sink	_	_	RYOSAN "98WKBS240" L=200	-	1	_			
			RYOSAN "98WKBS335" L=200	-	_	1			
Fan	Ι	-	Ikura Seiki "N3951"	_	2	3			

表2 選定部品リスト

文献

 (1) 佐藤, 伊東他, 半導体電力変換研究会 SPC-04-075, 2004
(2) S.Round, F.Schafmeister, et.al. IEEJ Transactions, Volume 126-D, Number 5, pp. 578 – 588(2006)
(3) 飯田, 伊東, SPC-5-47 IEA-05-2(2005)