マトリックスコンバータの転流方式の改善

正員伊東淳一 学生員加藤 康司^{*} (長岡技術科学大学)

Improvement of Commutation Method in Matrix Converter

Jun-ichi Itoh, member Koji Kato^{*}, student member (Nagaoka University of Technology)

This paper proposes a commutation method in a matrix converter. The proposed commutation method combines the input voltage commutation and the load current commutation. The proposed commutation method can decrease the short-circuit of changing in the relative input voltage magnitude and the open-circuit of zero crossing in the load current. Moreover, the proposed method can compensate for commutation error simply. The effects of the proposed method are confirmed by experimental results with a 750W induction motor and a R-L load. The total harmonics distortion of the input current and the output current are 2.6 point and 0.9 point lower than that of the condition without the compensation at 100% output power.

キーワード:転流,マトリックスコンバータ, 転流誤差補償

Keywords : Commutation , Matrix converter, Commutation error compensation

1. はじめに

近年,逆耐圧をもつIGBTが開発されており⁽¹⁾,交流電源から任意の交流電圧,周波数を直接出力できるマトリックスコン バータが注目され,盛んに研究されている^{(2)~66}。マトリック スコンバータは従来のダイオード整流器を使ったシステムに 比べ,入力電流を正弦波にできるため入力電流高調波を低減で き,また回生動作が可能であるため,省エネ,高効率の面で優 れている。また,PWM整流器とインバータシステムに対して は,直流バス存在しないため大型の電解コンデンサが不要であ り小型化,長寿命化の面でも優れている。

マトリックスコンバータの主回路は両方向の電圧と電流を 制御できる双方向スイッチ 9 個と入力フィルタから構成され る。このような独自の回路構成であるマトリックスコンバータ の問題点として転流がある。マトリックスコンバータでは,電 源短絡の防止に加え,誘導性負荷の場合,スイッチング素子に 印加するサージを防止するため負荷開放しないようにスイッ チングを行う必要がある。これを回避し,電流を転流する方式 について,さまざまな方法(7)~(15)が提案されているが,基本的 には入力電圧の大小関係を監視して転流する方法(電圧転流方 式)と,負荷電流極性を監視して転流する方法(電流転流方式) の2つに大別される。これらは、いずれも電源電圧の大小関係、 また負荷電流の極性ゼロクロス付近で,センサの誤差や検出遅 れにより転流失敗が発生しやすい。この転流失敗によりサージ 電圧やサージ電流が発生し,最悪の場合,素子を破壊する恐れ がある。電源電圧の大小関係や,電流極性を正確に検出するた めに,センサの精度を高くすると検出回路が複雑になり,コス トアップの原因となる。転流失敗が多発すると,サージ電流と

サージ電圧を吸収するスナバ容量が大きくなり,またスイッチ ング素子の寿命にも悪影響を及ぼす。

転流におけるスイッチの切り替えは,転流時間を設け,電源 短絡と負荷開放をしないように4ステップに分けて確実に電 流を転流する方式が一般的である。これを簡単化するため,ス イッチング素子のターンオンとターンオフ時間の違いに着目 した2ステップ転流⁽¹⁶⁾がある。2ステップ転流は,転流完了ま での時間が短く,転流パターンが簡単であるなどの利点があ る。しかし,デバイスの特性に依存しているので,温度やばら つきによってはスイッチングの際に,各出力相のスイッチ群は 同時オンも同時オフが発生し,電源短絡,負荷開放が起こる危 険性がある。また,電圧転流方式において,中間相を経由せず, 最大相と最小相の間で直接スイッチングさせる方法がある ⁽¹⁷⁾。しかし,この方法では,1回の電圧変化が大きいため,ス イッチング損失が増加する。

一方,転流を行うことで,インバータのデッドタイム誤差 と同様に,出力電圧に誤差が発生する。インバータの場合, この電圧誤差はシステムの外乱となり,特にモータドライブ システムの制御性能の劣化をもたらすため,高い制御性能を 発揮するにはデッドタイムにより発生する誤差電圧の補償 が重要である。マトリックスコンバータの場合でも同様に, 高い制御性能を発揮するには電圧誤差を補正しなくてはな らない。

本論文では、入力電圧の大小関係と負荷電流極性の両方を用 いて 4 ステップの電圧転流方式と電流転流方式を組み合わる 方式を提案する。この方式は、センサの検出精度を高めること なく、転流失敗の発生する回数を低減できる。次に、転流方式 によって発生する誤差の関係を明らかにし、提案する転流方式 においても従来と同様に簡単に転流誤差を補償する方法を提 案する。最後に,実験により,従来の転流方式と提案する転流 方式を比較し,電圧転流方式と電流電流方式の両方の長所を有 することを確認したので報告する。

2. 転流方法

図1に示す双方向スイッチ2個の回路において、電源v1から v2へ転流することを考える。マトリックスコンバータは、スイ ッチング時の電源短絡を防止し、誘導性負荷の場合、負荷リア クトルに流れる電流の連続性を確保するため、負荷開放しない ようにスイッチングしなくてはならない。つまり、各出力相の スイッチ群は同時オンも同時オフも許容されない。スイッチン グ時の転流は、基本的に入力電圧の大小関係を監視して転流す る方式と、負荷電流の極性を監視して転流する方式がある。以 下に4ステップの電圧転流方式と電流転流方式の転流シーケ ンスについて説明する。

<2.1> 電圧転流方式

図 2 に、電圧転流方式におけるS₁とS₂のスイッチングを示 す。電圧転流方式は入力電圧の大小関係を監視して転流を行う ので、図 2(a)のように、 $v_1 > v_2$ の場合、スイッチをS₁からS₂へ 切り替えるとすると、転流シーケンスは以下のようになる。

(1)

初期状態 ON: S_{1a}, S_{1b} OFF: S_{2a}, S_{2b}

- S_{2a} ON S_{1a} OFF
- S_{1a} ON S_{2b} ON
- S_{1b} OFF

上記のように、電源短絡を防止するため転流時間*T*_dを設けから へスイッチを切り替え,転流を行う。

図 2(a)の電圧転流シーケンスにおいて,電圧の大小関係が v₁< v₂の場合, ~ の期間でS_{1b}とS_{2a}が同時にオンする。こ の間, v₂からv₁へ短絡電流が流れる。このような転流失敗は, 入力電圧の大小関係が切り替わるときに,センサの検出誤差や 遅れなどにより発生しやすい。

<2.2> 電流転流方式

図3に,電流転流方式におけるS₁とS₂のスイッチングを示 す。電流転流方式は負荷電流の極性を監視して転流を行うの で,図3(a)のように,*i*_{load}>0の場合,スイッチをS₁からS₂へ切 り替えるとすると,転流シーケンスは以下のようになる。

初期状態	ON : S_{1a} , S_{1b}		OFF: S		
	\mathbf{S}_{1b}	OFF			
	S_{2a}	ON			(2)
	\mathbf{S}_{1a}	OFF			
	$\mathbf{S}_{2\mathbf{b}}$	ON			
	- · _				1 +

上記のように,負荷開放を防止するため転流時間 T_d を設けから へスイッチを切り替え,転流を行う。

図 3(a)の電流転流シーケンスにおいて、電流の極性 $i_{load} < 0$ の場合、 ~ の期間で $S_{1b} \ge S_{2b}$ が同時にオフになる。この間、

iload <0 の電流経路が存在しなくなり,電流の連続性を確保で きなくなる。誘導性負荷の場合,出力電圧に過大なサージ電圧 を発生させる。このような転流失敗は,出力電流の極性が入れ 替わるときに,センサの検出誤差や遅れなどにより発生しやす い。また,電流転流方式は,負荷電流の極性によって,転流パ ターンを決定しているため,電流極性信号には逆ヒステリシス 特性を持たせなければならない。

Fig. 2. Commutation pattern of Fig.1.

<2.3> 提案する転流方式

図 4 は本論文で提案する転流方式である。電圧転流方式は 電源電圧切り替わり付近において,電流転流方式は負荷電流の 極性切り替わり付近において,センサの検出誤差や遅れにより 転流失敗が発生しやすい。そこで,下記のごとく,転流方式を 切り替える。

入力電圧の大小関係切り替り付近 ・・・電流転流方式

【負荷電流のゼロクロス付近 ···電圧転流方式

入力電圧の大小切り替わり付近で電流転流を行うことによ り,電源電圧の大小関係によらず転流を行い,また出力電流の ゼロクロス付近で電圧転流を行うことで,負荷電流の極性によ らず転流を行う。そのため,正確に電源電圧の大小関係,負荷 電流の極性を検出しなくても,転流失敗を低減できる。

電流転流方式は,負荷電流により転流パターンを決定するの で,電流が出力電圧に対しフィードバック的に作用する。この 結果,電流転流では負荷電流の極性検出を誤った場合,負荷電 流がゼロ付近に停滞することがある。特に,極低速で電流振幅 が小さいときなどに失敗が生じやすい。一方,電圧転流方式は, 入力電圧によって転流パターンを決定するので,比較的安定に 動作できる。そのため,負荷電流の周波数により,電源電圧の 大小関係切り替わり付近と負荷電流のゼロクロス付近が重な る場合は,電圧転流方式を優先する。なお,マトリックスコン バータにて周波数変換を行うと,出力電流が小さく,電源電圧 の大小切り替わりが同時に起こることが予想される。このよう な場合,その1回においては,本方式においても転流失敗の可 能性があるが,トータルの転流失敗の回数は大幅に低減でき る。

3. 転流により発生する誤差

インバータの場合,高い制御性能を発揮するにはデッドタ イムにより発生する誤差電圧の補償が重要である。マトリッ クスコンバータの場合でも同様に,高い制御性能を発揮する には電圧誤差を補正しなくてはならない。

図 4(a)の v_{max} , v_{mid} , v_{min} はそれぞれ任意の状態における入力 電圧の最大相,中間相,最小相を示し,各相のスイッチオン 時間指令を T_{max} *, T_{mid} *, T_{min} *とする。いま,

最大電圧 中間電圧 最小電圧 中間電圧 最大電圧 のようにスイッチングすると仮定すると,1キャリア周期中 に4回転流が発生する。以下に,電圧転流方式と電流転流方 式の転流により発生する誤差について述べる。

<3.1> 電圧転流方式により発生する電圧誤差

図 4(b)に電圧転流方式のPWMパルス指令と、それに電圧転 流を付加したPWMパルス、出力電圧誤差を示す。出力電圧に おいて、点線が指令出力電圧であり、実線が実際の出力電圧 である。PWMパルス指令に転流動作が付加されると、各スイ ッチがオンする時間は実際にオンする時間をT_{max}、T_{mid}、T_{min}と し、負荷電流をi_{load}、1 ステップの転流時間をT_dとすれば(3) 式となる。

図3 提案する転流方式

Fig. 3. Proposed commutation method.

 $\begin{cases} T_{\max} = T_{\max}^{*} - T_{d} \\ T_{\min} = T_{\min}^{*} \\ T_{\min} = T_{\min}^{*} + T_{d} \end{cases} \begin{cases} T_{\max} = T_{\max}^{*} + T_{d} \\ T_{\min} = T_{\min}^{*} \\ T_{\min} = T_{\min}^{*} - T_{d} \\ (i_{load} > 0) \end{cases} (i_{load} < 0) \end{cases}$ (3)

(3)式から,電圧転流方式では $T_{max} \geq T_{min}$ が転流時間 T_d だけ増 減する。負荷電流極性によって $T_{max} \geq T_{min}$ を T_d だけ増加または 減少させ,誤差電圧を発生させる。この電圧転流を付加した ときに発生する出力電 $E_{v_{Vcomm}}$ は(4)式のように指令電 $E_{v} \approx E_{v}$ 誤差電圧で表せる。ただし, f_s はキャリア周波数,y = sign(x)は符号関数で,x > 0のとき y = 1, x < 0のとき y = -1である。

$$v_{Vcomm} = v^* - (v_{max} - v_{min})T_d f_s \operatorname{sign}(i_{load})$$
(4)

電圧転流方式により生じた転流誤差を補償するためには, (5)式のように,負荷電流極性に応じて $T_{max}^* \geq T_{min}^* \delta T_d$ だけ 補償し, $T_{max}^{**} \geq T_{min}^{**} \delta x$ めればよい。

$$\begin{cases} T_{\max}^{**} = T_{\max}^{*} + T_d \operatorname{sign}(i_{load}) \\ T_{\min}^{**} = T_{\min}^{*} - T_d \operatorname{sign}(i_{load}) \end{cases}$$
(5)

<3.2> 電流転流方式により発生する電圧誤差

図 4(c)に電流転流方式の PWM パルス指令と,それに電流 転流を付加した PWM パルス,出力電圧誤差を示す。電流転 流方式も電圧転流方式と同様に,PWM パルス指令に転流動 作が付加されると,各スイッチがオンする時間は以下のよう になる。

$$\begin{cases} T_{\max} = T_{\max}^{*} + T_{d} \\ T_{\min} = T_{\min}^{*} \\ T_{\min} = T_{\min}^{*} - T_{d} \end{cases} \begin{cases} T_{\max} = T_{\max}^{*} - T_{d} \\ T_{\min} = T_{\min}^{*} \\ T_{\min} = T_{\min}^{*} + T_{d} \\ (i_{load} > 0) \end{cases}$$
(6)

電流転流方式においても、(6)式のように負荷電流極性によって T_{max} と T_{min} に T_d が誤差として付加する。(7)式に示す電流転流方式によって出力する電 Ev_{Icomm} も、電圧転流方式と同様に、指令電 Ev^* と誤差電圧で表せる。

$$v_{Icomm} = v^* + (v_{max} - v_{min})T_d f_s \operatorname{sign}(i_{load})$$
(7)

電流転流方式も(8)式のように負荷電流極性に応じて T_{max}^{**} と T_{min}^{**} を T_d だけ補償し, T_{max}^{**} と T_{min}^{**} を求めればよい。

 $\begin{cases} T_{\max}^{**} = T_{\max}^{*} - T_d \operatorname{sign}(i_{load}) \\ T_{\min}^{**} = T_{\min}^{*} + T_d \operatorname{sign}(i_{load}) \end{cases}$ (8)

(b) Voltage error in case of voltage commutation.

Fig. 4. Behavior of voltage error by commutation.

Fig. 5. Proposed commutation error compensation.

<3.3> 提案する転流方式により発生する電圧誤差

提案する転流方式は,上記の電圧転流方式と電流転流方式 を組み合わせる。(4)式,(7)式を比較すると明らかなように, 2 つの転流方式で発生する誤差電圧の大きさは等しく,符号 のみが異なる。従って,提案する転流方式によって発生する 誤差は,負荷電流の極性と転流方式により,電圧転流のとき *K_{comm}=1*,電流転流のとき*K_{comm}=-1とすれば*,以下のように表 せる。

$$v_{VIcomm} = v^* - (v_{max} - v_{min})T_d f_s \operatorname{sign}(i_{load}) K_{comm}$$
(9)

よって,提案する転流方式は,電流極性と転流方式によっ T_{d} だけ誤差電圧が発生する。この誤差電圧を補償するには 電流極性と転流方式を監視し,(10)式のように $T_{max}^{*} \geq T_{min}^{*}$ の オン時間から T_{d} を加減算することで,電圧転流方式,電流転 流方式と同様に補償できる。

$$T_{\max}^{**} = T_{\max}^{*} + T_d \operatorname{sign}(I_{load}) K_{comm}$$

$$T_{\min}^{**} = T_{\min}^{*} - T_d \operatorname{sign}(I_{load}) K_{comm}$$
(10)

図 5 に提案する転流誤差補償の 1 相分のブロック図を示 す。負荷電流(Load current)と電流閾値(Threshold current level) より電圧転流方式と電流転流方式のどちらかを選択し転流 パターンを付加する。その転流パターンと負荷電流の極性に より補償量を決定し, T_{max} *と T_{mid} *に与えることで,転流誤差 を補償する。

4. 実験結果

提案する転流方式について,実験により効果の検証を行った。表1に実験条件を示す。転流方式を切り替えるための電流閾値は,低すぎるとスイッチングリプル等による検出ミスが発生し,転流失敗する可能性があるため,ここでは定格電流のピーク値の約20[%]である±1.1[A]とする。

図6に電圧転流方式と電流転流方式の実験結果を示す。図 6(a)は電圧転流方式の電源電圧の大小切り替わり付近の波形 であり,図6(c)は電流転流方式の負荷電流ゼロクロス付近の 波形である。転流そのものの違いを確認するため,負荷は R-L 負荷としている。図6に示す 部で転流失敗が生じてい る。電圧転流方式では,電源電圧の大小切り替わり付近にお いて,電源電圧の検出誤りにより電源短絡が発生し,入力電 流にサージ電流が発生している。一方,電流転流方式では, 負荷電流ゼロクロス付近において,電流極性検出に誤りによ り負荷開放し,負荷電流のゼロクロス付近で出力電圧にサー ジ電圧が発生している。さらに,電流転流方式では,極性検 出を誤ると転流出来なくなるため,負荷電流がゼロ付近に停 滞し,波形がひずむことが確認できる。

図 6(b),(d)は提案する転流方式の波形である。提案する転流 方式では,電源電圧の大小切り替わり付近,負荷電流のゼロ クロス付近においても,転流失敗をすること無く,確実に転 流しており,提案方式が効果的であることが確認できる。

図 7 は入力電流と出力電流の 25 次までの T.H.D.の計算結 果である。入力電流について,電圧転流方式は,電源電圧の 大小切り替わり付近においてセンサの検出ミスによる転流 失敗などの影響により,入力電流にひずみが発生するため, 電流転流方式と比較すると T.H.D.が悪化する。

図 6 電圧転流,電流転流と提案法の実験結果(R-L 負荷) Fig.6. Experimental result of voltage commutation, current

commutation and proposed commutation (R-L load).

TubleT Experimental parameter.						
Input voltage	200[V]		2 [mH]			
Input frequency	50[Hz]	LC filter	6.6 [µ F]			
Cut-off frequency	1.3[kHz]	Commutation time	2.5[µ s]			
R-L load	V/f control	750[W] Motor	Vector control			
Output frequency	20[Hz]	Motor speed	600[rpm]			
Threshold current	nt level	± 1.1 [A]				

表1R-L 負荷での実験条件 Table 1 Experimental parameter

一方,出力電流について,電流転流方式では,負荷電流ゼロ クロス付近におけるセンサの検出ミスによる転流失敗や負 荷電流検出信号の逆ヒステリシス特性のため,ゼロクロス付 近において波形がひずむ。そのため電圧転流方式と比較する とT.H.D.が悪化する。

提案する転流方式は、

入力電圧の大小関係入れ替り付近 ・・・電流転流方式

し負荷電流のゼロクロス付近 ・・・電圧転流方式 のように転流方式を組み合わせるため、電源電圧の大小切り 替わり付近における入力電流ひずみと、負荷電流ゼロクロス 付近における負荷電流ひずみの両方を低減できる。そのた め、入力電流のT.H.D.について提案する転流方式と電流転流 方式、出力電流T.H.D.について提案する転流方式と電圧転流 方式、それぞれを比較すると大きな差がない。すなわち、提 案する転流方式は両方のトレードオフを解決し、入出力とも に波形を改善できる。

図8は提案する転流方式にて,ベクトル制御によりモータ を駆動した場合の結果であり,入出力電流波形と25次まで のT.H.D.結果を示している。提案する転流方式でモータを制 御しても良好な波形を得られることが確認できる。また, T.H.D.結果において転流誤差補償有りと無しの場合を比較す ると,転流誤差補償有りの場合では,出力100[%]で入力電流 は2.6pt,出力電流は0.9pt改善されており,提案する誤差補 償方式が有効であることが確認できる。また,転流誤差補償 を行った場合,出力100[%]で入力電流,出力電流のT.H.D. はそれぞれ3.9[%],2.1[%]を達成している。

5. まとめ

本論文では,入力電圧の大小関係と負荷電流極性の両方を 用い,転流失敗の発生する回数を大幅に低減できる転流方式 を提案した。また,転流によって発生する誤差の関係を明ら かにし,電圧転流と電流転流を切り替えた場合でも,問題な く転流誤差を補償できる方法を提案した。R-L 負荷と 750W の誘導機により実験を行うことで従来方式と比較し,その有 効性を検証した。下記にその結論を示す。

- (1) 検出センサの精度を高めることなく,転流失敗を低減 できる。
- (2) 電源電圧切り替わり付近における入力電流ひずみと, 出力電流ゼロクロス付近の負荷電流ひずみ両方を低 減できる。
- (3) 提案する転流方式の転流による電圧誤差は従来の転 流方式と同様に簡単に補償できる。
- (4) ベクトル制御時の入力電流,出力電流のT.H.D.は出力 100[%]でそれぞれ 3.9[%], 2.1[%]である。

以上のことから,提案する転流方式は,従来の転流方式を 組み合わせることで簡単に構成でき,転流失敗を低減するこ とが出来る。これより,転流失敗で発生するサージを吸収す るスナバ容量を小さくでき,また素子の寿命の観点から,提 案する転流方式は非常に有効であると考える。

文 献

- M.Takei, A.Odaka, H.Fujimoto: 「Application technique of Reverse blocking IGBT」Fuji review, Vol.75 No.8, 445-448, 2002(in Japanese) 武井・小高・藤本:「逆阻止 IGBT の適用技術」富士時報, Vol.75 No.8, 445-448, 2002
- (2) J.Oyama , T.Higuchi, E.Yamada, T Koga, T. Lipo: "New Control Strategy for matrix converter " Proceedings of Power Electronics Society conference, pp360-367, 1989
- (3) P. W. Wheeler, J. Rodriguez, J. C. Clare, L. Empringham: "Matrix Converters: A Technology Review" IEEE Transactions on Industry Electronics Vol. 49, No. 2, pp274-288, 2002
- (4) J.Itoh, I.Sato, H.Ohguchi, K,Sato, A.Odaka, N.Eguchi: 「A Control Method for the Matrix Converter Based on Virtual AC/DC/AC Conversion Using Carrier Comparison Method 」IEEJ Vol.124-D No.5,2004(in Japanese)
 伊東・佐藤・大口・佐藤・小高・江口:「キャリア比較方式を用いた仮 想 AC/DC/AC 変換方式によるマトリックスコンバータの制御法」電学 論 D, 124 巻 5 号, 457-463, 2004
- (5) H.Hara, E.Yamamoto, M.Zenke, K.Kan, T.Kume"An Improvement of Output Voltage Control Performance for Low Voltage Region of Matrix Converter" Proc. of IEEJapan IAS 2002, pp.I-313-316 (1-48), 2004 (in Japanese) 原・山本・善家・姜・久米:「低電圧領域におけるマトリクスコンバー

タの電圧改善の一方策」平成16年産業応用部門大会,214,2004

- (6) J.Oyama, X. Xia, T.Higuchi, K.Kuroki, E.Yamada, T.Koga:「VVVF On-line Control of Matrix converter」IEEJ Vol.116-D No.6,2004(in Japanese) 小山・夏・樋口・黒木・山田・古賀:「PWM サイクロンコンパータの VVVF オンライン制御」電学論D, 116 巻 6 号, 644-651, 1996
- (7) J.Itoh, H.Tajima, H.Ohsawa: 「Induction Motor Drive System using V-connection AC Chopper」IEEJ Vol.123-D No.3,2003(in Japanese)
 伊東・田島・大沢「三相 V 結線交流チョッパを用いた誘導電動機駆動 システム」 電学論 D, 123 巻 3 号, 271-277, 2003
- (8) J. Mahlein, J. Igney, J. Weigold, M. Braun, O. Simon, "Matrix Converter Commutation Strategies With and Without Explicit Input Voltage Sign Measurement," IEEE Trans. on Industrial Electronics, Vol.49, No.2, pp.407-414, 2002
- (9) P. W. Wheeler, D. A. Grant, "Optimized input filter design and low-loss switching techniques for a practical matrix converter," IEE Proceedings of Electric Power Applications, Vol.144, No.1, pp.53-60, Jan., 1997
- (10) K. G. Kerris, P. W. Wheeler, L. Empringham, and J. C. Clare, "Implementation of a Matrix Converter Using p-Channel MOS-Controlled Thyristors," IEE Conference on Power Electronics and Variable Speed Drives, London, September 2000.
- (11) L.Empringham, P.W.Wheeler, J.C.Clare, "Intelligent Commutation of Matrix Converter Bi-directional Switch Cells using Novel Gate Drive Techniques," Proc. of IEEE Power Electronics Specialists Conference 1998 (PESC98), pp.707-713, 1998
- (12) M. Ziegler and W. Hofman, "Performance of a two step commutated matrix converter for ac-variable-speed drives," Proc. of EPE 1999, No.258 (CD-ROM)
- (13) P W Wheeler, J C Clare, L Empringham, "A MCT BASED MATRIX CONVERTER WITH MINIMIZED COMMUTATION TIMES AND ENHANCED WAVEFORM QUALITY," IEE Conference Publication (Institute of Electrical Engineers), Vol.487, pp.206-210 (2002)
- (14) H.ohguchi, J.Itoh, I.Sato, A.Odaka, H.kodachi, N.Eguchi: "An Improvement Scheme of Control Performance for Matrix Converter" Proc. of EPE 2004
- (15) H.Hara, K.Kan, E.Yamamoto, K.Yamada, M.Zenke, E. Watanabe, "Performance Improvement of Matrix Converter Drives," Proc. of IEEJapan IAS 2002, pp.931-934 (214) (2002) (in Japanese)
 原・姜・山本・山田・善家・渡辺:「マトリクスコンバータのドライブ 性能改善」平成 14 年産業応用部門大会, 214, 2002
- (16) M. Ziegler and W. Hofmann, "Semi natural two steps commutation strategy for matrix converters," in Proc. IEEE PESC'98, pp.727–731, 1998.
- (17) Lixiang Wei, T.A.Lipo, Ho Chan," Robust voltage commutation of the conventional matrix converter," Power Electronics Specialist Conference, 2003. PESC '03. 2003 IEEE 34th Annual Volume 2, 15-19 June 2003 Page(s):717 - 722 vol.2