スイッチ電圧が制御可能な 高調波注入方式高力率整流器の動作特性

芦田 樹*,伊東 淳一(長岡技術科学大学)

Characteristics of Harmonic Current Injection Method PFC Rectifier with Switch Voltage Control Ashida Itsuki, Jun-ichi Itoh, (Nagaoka University of Technology)

1. はじめに

近年,高調波対策のため,様々な高力率整流器が提案されている。しかし,現在提案されている高力率整流器を高 周波電源適応する場合,電流制御に高速な応答が必要とな るため,そのまま使用することが難しく,回路や制御に工 夫が必要となる。

よって,著者らは,スイッチ電圧が制御可能な高調波注 入方式高力率整流器を提案し,シミュレーションにより動 作を確認した⁽¹⁾。

本論文では提案回路について 1kW の試作機を製作し,実 験に動作特性の確認を行った。提案回路では,スイッチ電 圧を制御することにより,素子に MOS-FET を使用できる。 これにより高速な電流制御を実現できる。

2. 回路構成

図1に提案回路を示す。提案回路では2個のスイッチ S_1 , S_2 の制御により高調波電流 i_h を発生させ、注入用トランス を介して交流側に注入することにより入力電流波形を改善 する。 S_1 , S_2 に MOS-FET を用いることによりスイッチング 周波数を高速にでき、高速な電流制御を可能にする。

また、 S_1 、 S_2 に印加される電圧はコンデンサ C_2 の電圧 V_{C2} に等しくなる。補助回路が無い場合、 i_h の制御を行うと、 C_2 に流れる電流の平均が0より大きくなり、 V_{C2} が増加し続 ける。提案回路では V_{C2} を制御するために補助回路を用い る。補助回路は S_3 をオンにすることにより、 C_2 のエネルギ ーを L_3 、 L_4 に蓄え、 S_3 をオフにすることで D_1 、 D_2 を介し て C_1 、 C_3 にエネルギーを回生する。 S_3 のスイッチング周波 数は低速でよいため、使用する素子は IGBT とする。

提案回路では、 S_1 , S_2 の切り替えにより L_1 , L_2 に印加される電圧 V_{L1} , V_{L2} を変化させ、 i_h を制御する。 i_h の制御において、極性を切り替えるためには、 V_{L1} , V_{L2} の極性が切り替わる必要がある。よって(1)式を満たす必要がある。

$$V_{L1} = V_{in \max} - V_{C1} \ge 0 \qquad (S_1 \land \lor \Leftrightarrow)$$

$$V_{L1} = V_{in \max} - V_{C1} - V_{C2} \le 0 \qquad (S_2 \land \lor \Leftrightarrow)$$
(1)

ここでは V_{inmax} は入力最大相電圧, V_{CI} は C_I の電圧である。 (1)式の V_{inmax} を入力電圧 V_{in} で表し, V_{C2} について整理する と(2)式が導かれる。電流制御を行うためには(2)式を満たす

$$V_{C2} \ge \left(\frac{3\sqrt{2}}{\pi} - \sqrt{\frac{2}{3}}\right) V_{in} \tag{2}$$

図2に提案回路の制御ブロック図を示す。高調波電流発 生部分とスイッチ電圧制御部分の制御は互いに干渉せず, 独立に行うことができる。また,高調波電流指令*i*_h*は従来 と同様に最適高調波電流⁽²⁾を用いることができる。

3. 直流リアクトルの影響

提案回路では,直流リアクトル L_1 , L_2 を増加することに より入力電流の高調波成分を抑制できる。しかし, L_1 , L_2 を増加させると,スイッチングによる i_h の変化が小さくな る。 i_h を指令値に追従させるためには,(3)式のように i_h の 変化率が i_h *の変化率より大きい必要がある。

$$\frac{\Delta i_h}{\Delta t} \ge \frac{\Delta i_h^*}{\Delta t} \tag{3}$$

提案回路において, *i_h* の変化率は(4)式で求められる。ここで *V_{in}* は入力線間電圧の実効値である。

$$\frac{\Delta i_h}{\Delta t} = \left(\frac{3}{\sqrt{2\pi}} - \frac{1}{\sqrt{6}}\right) \frac{V_{in}}{L} \tag{4}$$

また, i_h *を入力周波数fの3倍周期の三角波と近似すると,その peak to peak I_{PP} は、出力電力 P_{out} と V_{in} から(5)式となる。

$$I_{PP} = \sqrt{6} \frac{P_{out}}{V_{in}} \tag{5}$$

電流指令の変化率は *I_{PP}* を三角波の半周期で除算することで求められ,三角波の周期を*T_{ih*}とすれば*,(6)式にて得られる。

$$\frac{\Delta i_h^*}{\Delta t} = \frac{I_{PP}}{\frac{T_{ih^*}}{2}} = 6\sqrt{6} \frac{fP_{out}}{V_{in}}$$
(6)

(3)式に(4)式,(6)式を代入し,*L*について整理すると,(7) 式が得られ,電流制御可能な*L*の範囲は,入力電圧 200V, 入力周波数 50Hz,出力 1kW の場合,以下のようになる。

$$L \le \frac{1}{4} \left(\frac{1}{\sqrt{3}\pi} - \frac{1}{9} \right) \frac{V_{in}^2}{fP_{out}} = \frac{1}{4} \left(\frac{1}{\sqrt{3}\pi} - \frac{1}{9} \right) \frac{200^2}{50 \times 1000} = 14.5 [mH] \quad (7)$$

4. 実験結果

図3に0.9kW 出力時の提案回路の実験波形を示す。提案 回路は高周波電源向けだが、実験設備の関係上、実験は入 力周波数50Hzで行った。実験パラメータを表1に示す。電 流制御のヒステリシス幅はスイッチング周波数が約40kHz になるように設定した。この図より、入力電流がほぼ力率1 の正弦波になっていることが確認できる。また、このとき の入力電流ひずみ率は約9.3%であった。スイッチング電圧 はデッドタイムによるサージが見られるが、ほぼ120V にな っており、指令値どおりに制御されている。

図 4 に入力電流の高調波解析結果を示す。提案回路では IEC-61000-3-2 の規格を満たしていることが確認できる。

図 5 に提案回路の効率,入力力率特性を示す。提案回路 では,入力力率が約 99%,1.3kW 出力時に最大効率 93.6% が得られた。効率低下の原因としては,高周波電源に対応 するためにスイッチング周波数を高く設定しており,スイ ッチング損失が増加していることが挙げられる。

図 6 に入力電流ひずみ率の測定結果を示す。このグラフ を見ると、出力 1.3kW 付近で入力電流ひずみ率が増加して いる。今回の実験では定格出力 1kW で直流リアクトルを設 計しており、1.3kW 付近では、(7)式を満たせず、電流制御 不能な期間ができたためと考えられる。

5. まとめ

本論文では,高周波電源用高調波注入方式高力率整流器を 提案し,実験によりその基本的な動作を確認した。今後, 各素子の設計法の確立を行う予定である。

立
献

Table1	Experi	mental	parameter.	
	0.57.73	Ĭ		Т

Input voltage	200[V]	Input frequency	50[Hz]				
Rated output	1[kW]	Rated output	270[V]				
power	1[[, (,)]]	voltage					
L_1, L_2	15 [mH]	L_3 , L_4	0.5[mH]				
C_1, C_2, C_3	520 [µF]						
Phase voltage [200 V/div] Input current [5 A/div]							
Switch volta	age [50 V/div]	Time [4 msc	ec/div]				
1.000	Experim	ental result IEC-61000-3-2	2				
			•• 				

Fig.5. Efficiency and input power factor.

Fig.6. T.H.D. of input current.

 ⁽²⁾ Y. Nishida; "A New Simple Topology for Three-Phase Buck-Mode PFC Rectifier", Proc. IEEE APEC, Page(s):531 – 537 (1996)