発電機電源における

マトリックスコンバータの入力制御の最適化

学生員 春名 順之介 正員 伊東 淳一(長岡技術科学大学)

An Optimum Control of an Input Side for a Matrix Converter with a Generator Power Supply Junnosuke Haruna, Student Member, Jun-ichi Itoh, Member (Nagaoka University of Technology)

This paper proposes a stabilization control for an input current reference and the optimum input power factor control using a generator as a power supply. This paper discusses the control characteristics based on experimental results as follows; (1) fundamental operation of an RL load with the generator power supply, (2) a relationship among an input current phase, an input terminal voltage and an output voltage, (3) an acceleration characteristics of the generator. The results of the experiment confirmed the validity of the proposed system.

キーワード:マトリックスコンバータ,発電機,同期リアクタンス,ダンピング制御,最適入力力率制御 **Keywords**: Matrix converter, Generator, Synchronous reactance, Damping control and Optimum input power factor control

1. はじめに

近年,直流リンクを介さずに,交流電源から任意の電圧, 周波数の交流に直接変換可能なマトリックスコンバータが 注目を浴び,盛んに研究されている⁽¹⁻⁷⁾⁽⁹⁻¹⁵⁾。その背景には マトリックスコンバータが従来の PWM コンバータ-インバ ータシステムと比較し,小型,軽量,長寿命,高効率化の 点で優れていることに加え,逆耐圧を持つ IGBT が開発され ていることが挙げられる。

一方,マトリックスコンバータの用途は,現在用いられているエレベータ等の他にも多数検討されており,一例として風力発電やハイブリッド EV への適用が考えられる。こうした用途では,入力部への発電機の接続が想定される。

マトリックスコンバータの制御方法の課題として,出力 電圧と入力電流の同時制御が挙げられる。また,入力電圧 を直接変換し,出力電圧を制御していることから,入力電 圧の変動によって,出力電圧や入力電流に影響が生じる。 入力部に発電機を接続すると,発電機の運転状況により逆 起電力の振幅と周波数が常に変動するため,マトリックス コンバータの出力範囲に影響を与える。

発電機は出力インピーダンスが大きく、特にマトリック スコンバータと 1:1 の容量の同期発電機が接続された場合 では、同期リアクタンスは 40~60[%]となり、システム不安 定化の原因となる。これに対して筆者らはこれまでに、回 転座標上における入力電流指令のダンピング制御を用いた システムの安定化制御を提案した⁽¹⁾。また、入力電圧と出力 電圧の関係を入力電流位相角に着目して解析し、発電機接 続時における最適入力力率制御⁽²⁾を提案している。

本論文では,発電機電源におけるマトリックスコンバー タの入力制御の最適化を提案する。これまで提案してきた 安定化制御と最適入力力率制御を,発電機模擬電源および 発電機に適用し,定格回転時における RL 負荷特性,および 発電機の加速特性を実機にて検証し,提案法の有用性を明 確にしたので報告する。

2. 入力側の最適化制御

〈2·1〉 入力電流のダンピング制御

図1 に発電機を電源とするマトリックスコンバータの回

路構成を示す。入力フィルタは同期リアクタンスで代用で きる。図1において、マトリックスコンバータの入力電圧 はフィルタコンデンサの端子電圧と一致するが、同期リア クタンスの影響を受けるため変動が大きく、歪みが発生す る。また、マトリックスコンバータの入力電流指令は入力 電圧より生成するため、歪みの大きい入力電圧から生成し た場合、入力電流も歪み、システムが不安定化する。

図2にdq座標上における入力電流指令のダンピング制御 のブロック図を示す。通常のダンピング制御では、高調波 成分抽出用のバンドパスフィルタ(BPF)が必要であるが、発 電機電源の場合、入力周波数が変動するので、カットオフ 周波数が一定にできない。そこで、dq座標変換し、基本波 周波数成分を直流とすることで、高調波成分を時定数の低 いローパスフィルタ(LPF)で抽出できる。また、図2におい て、回転座標-三相変換時に位相角*θ_{pfc}を*重畳することで、任 意の入力力率に変化させることができる。

〈2·2〉 最適入力力率制御

マトリックスコンバータは入力力率を自由に設定できる が,直接形 AC/AC 電力変換器では,出力電圧は入力力率に 依存するため,通常は力率を1に制御する。

発電機電源において従来の力率 1 制御を行った場合,入 力電流位相は入力端子電圧 v_c の位相に一致するが,逆起電 力 E_0 の位相とは異なる。発電機電源における出力電圧 v_{out} は(1)式で表される。ただし, λ は変調率($0 \le \lambda \le 0.866$), i_p は有 効電流, i_a は無効電流である。

(1)式において、*i*_q=0の時,出力電圧は逆起電力と変調率の積となる。従って,発電機電源では、入力端子電圧の振幅と位相に関係なく、逆起電力によって電圧が出力される。

入力電流位相を発電機の逆起電力の位相と一致させるに は、逆起電力の位相情報が必要である。しかし、発電機は 逆起電力成分と同期リアクタンスを分離することができな いので、逆起電力のみを検出するのは不可能である。そこ で、本論文では、磁極位置センサを用いて逆起電力の位相 を推定する。

図3 に発電機電源における入力側の最適制御をブロック 図に示す。逆起電力は磁極位置センサによって検出され, PLL と位相計算によって位相情報化される。その後,図2 の入力電流指令計算によって逆起電力と同位相の入力電流 指令が生成され,マトリックスコンバータが制御される。

3. 実験結果

本論文では,提案法の有用性を検証するために,同期発 電機,および同期発電機と同等の同期インピーダンスをリ アクトルで模擬し,系統電源に接続した発電機模擬電源に て実験を行っている。以下にその詳細を示す。

Input power factor control

図2 入力電流指令のダンピング制御ブロック図

Fig. 2. Damping control block diagram of the input current reference.

図3 入力側の最適制御ブロック図

Fig. 3. Block diagram of Optimum control method for input

side.

表1 実験条件

Table 1. Experimental conditions.

PM Generator				
Back e.m.f. (line)	151[V]	Rated output		3.7[kW]
Rated turns	1800[rpm]	Number of pole		6
Large impedance power supply				
V _{in} (line)	151[V]	Input frequency		50[Hz]
Sync. Reactance	12[mH]			
Filter capacitor	6.6[μF]	Output reference	120[V]50[Hz]	
Load		7.8[Ω]	5[mH]	

〈3・1〉 発電機模擬電源による RL 負荷実験

図4に表1の条件を用いた発電機模擬電源によるRL負荷の実験結果を示す。(a)に安定化制御および最適力率制御を 導入しない場合,(b)に安定化制御を導入した場合,(c)には (b)に加え最適入力力率制御を導入した場合の結果を示す。

図 4(a)では、入力端子電圧、入力電流に共振が発生している。入力端子電圧の瞬時値は 300[V]を越え、また、入力電流歪み率は13.8[%]となり、不安定になっているのが確認できる。さらに、出力波形も入力側の影響を受け歪んでいる。

図 4(b)は(a)と比較して,安定化制御によってフィルタ共振が抑制されている。入力端子電圧は 200[V]以下に,入力 電流歪み率は4.57[%]となり,約9ポイント改善され,安定 化制御の有効性が確認できる。さらに,出力波形も入力側

の発振が改善したため歪みが小さくなっている。しかし, 出力線間電圧は 108[V]となり,指令通りの出力が得られて いるわけではない。

図 4(c)では(b)と比較し、最適入力力率制御によって入力 電流位相が入力端子電圧に対して進んでいるのが確認でき る。また、入力力率を進めた場合でも入出力波形は正弦波 に制御されており、制御性能が悪化していないことが確認 できる。出力線間電圧は約 11[V]上昇し 119[V]となり、出力 電圧指令通りの電圧が得られている。これらの結果から、 発電機のような出力インピーダンスの大きい電源におけ

る,入力電流指令のダンピング制御と入力電流位相の最適 化が有効であることが確認できる。

〈3·2〉 発電機による RL 負荷実験

図 5 に表 1 の条件を用いた同期発電機の定格運転時にお ける RL 負荷の実験結果を示す。同期発電機の逆起電力は正 弦波ではなく台形波であるため,発電機模擬電源と比較す ると制御性能が悪化すると考えられるが,入力電流安定化 制御によって入力電流は正弦波に制御されている。また, 最適入力力率制御を適用することで出力電圧は 120[V]で正 弦波に制御されており,出力指令通りの値が得られている。 これより,入出力共に良好な結果であることが確認できる。

(3・3) 入力電流位相と端子電圧,出力電圧の関係

図 6 に発電機電源における,端子電圧を基準として入力 電流位相の変化させた場合の端子電圧,出力電圧の関係を 示す。入力電流位相を進めることで,発電機の逆起電力を 基準とした入出力電圧比は最大となり,さらに進めると入 出力電圧比が小さくなっていくのが確認できる。しかし, 入力端子電圧と逆起電力の比は,出力電圧が減少する位相

RL load.

においても上昇し,最大で1.3倍となっている。従って,入 力電圧検出やフィルタコンデンサの耐圧には注意しなけれ ばならない。

〈3・4〉 発電機の加速特性実験

図7に表1の条件における発電機の加速実験結果を示す。 発電機は900[r/m]から1800[r/m]まで加速し,その後900[r/m] まで減速している。加減速の時間はそれぞれ0.5[s]である。 加速開始時,加速中,加速終了時共に,入出力の波形に急 峻な変動は見られず良好に制御されている。また,定格回 転中は図6と同様の結果となっている。減速時においても 各波形の急峻な変動は起こらず,良好な結果が確認できる。 これより,入力電流の安定化制御および最適入力力率制御 が発電機の加減速運転に対しても有用であることが確認で きる。なお,本実験は変調率を固定としているが,先に筆 者らが提案したように⁽¹⁾,入力電圧が低下した場合に変調率 を上昇させることで,出力電圧を一定にできる。

4. 結論

本論文では,発電機を電源とするマトリックスコンバー タにおいて,入力電流指令のダンピング制御と入力力率の 制御を用いた,入力側の最適化制御を提案した。提案法の 有用性を検証するために,発電機,および,発電機模擬電 源にて以下の項目について実験を行い,検証した。

- 1. 発電機模擬電源による RL 負荷特性
- 2. 発電機電源における RL 負荷特性
- 発電機電源における入力力率位相,逆起電力, 入力端子電圧,出力電圧の関係
- 4. 発電機の加速試験特性

今後は、制御特性のさらなる高性能化、および発電機電 源における電動機負荷特性などを検証していく予定であ る。なお、本研究は平成17年度産業技術研究助成事業の支 援を受けており、関係各位に感謝の意を表します。

文 献

- J.Haruna and J. Itoh: "Control Methods of a Matrix Converter with a Generator", SPC-06-161, IEA-06-56, (2006)
 春名順之介・伊東淳一:「マトリックスコンバータによる発電機の制 御特性の検討」, SPC-06-161, IEA-06-56 (2006)
- (2) J.Haruna and J. Itoh: "A Consideration about the Voltage Utilization Ratio of the Matrix Converter Connected a Generator to the Input Side", Annual meeting of IEEJ, p161, (2007) 春名順之介・伊東淳一:「発電機を電源とするマトリックスコンバー

タの電圧利用率に関する一考察」, 平成 19 年全国大会, p161 (2006) (3) J. Itoh, H. Kodachi, A. Odaka, I. Sato, H. Ohguchi and H. Umida: "A High Performance Control Method for the Matrix Converter Based on PWM generation of Virtual AC/DC/AC Conversion". JIASC IEEJ, pp. I-303 -

I-308 (2004) 伊東淳一・小太刀博和・小高章弘・佐藤以久也・大口英樹・海田英 俊:「パルスパターンに着目した仮想 AC/DC/AC 変換方式によるマ トリックスコンバータの高性能化」,平成 16 年電気学会産業応用部 門大会, pp. I-303 - I-308 (2004)

- (4) A. Odaka, I. Sato, H. Ohguchi, Y. Tamai, H. Mine and J. Itoh: "A PAM Control Method for the Matrix Converter Based on Virtual AC/DC/AC Conversion Method", Trans. IEEJ, Vol.126-D, No.9 p1185 (2006) 小高章弘・佐藤以久也・大口英樹・玉井康寛・美根宏則・伊東淳一: 「仮想 AC/DC/AC 変換方式に基づいたマトリックスコンバータの PAM 制御法」, 電学論 D, Vol.126, No.9, p.1185 (2006)
- (5) J. Oyama, X. Xia, T. Higuchi, K. Kuroki, E. Yamada and T. Koga: "VVVF On-line Control of Matrix Converter", Trans. IEEJ, Vol.116-D, No.6, p644 (1996) 小山純・夏暁戒・樋口剛・黒木恒二・山田英二・古賀高志:「PWM

小山純・夏晩瓜・樋口両・黒木巨二・山田央二・古員同心・FWM サイクロコンパータの VVVF オンライン制御」, 電学論 D, Vol.116, No.6, p.644 (1996)

- (6) T. Takeshita and H. Shimada: "Matrix Converter Control Using Direct AC/AC Conversion Approach to Reduce Output Voltage Harmonics", Trans. IEEJ, Vol.126-D, No.6 p778 (2006) 竹下隆晴・島田大志:「出力電圧高調波を低減する AC/AC 直接変換 方式マトリックスコンバータ制御」,電学論 D, Vol.126, No.6 p.778 (2006)
- (7) Y. Tadano, S. Urushibata, M. Nomura, and T. Ashikaga: "A Study of Space Vector Modulation Method for Three-Phase to Three-Phase Matrix Converter", JIASC IEEJ, pp. I-481 - I-484 (2006) 只野裕吾・漆畑正太・野村昌克・足利正:「マトリクスコンバータの 空間ベクトル変調法の検討」, 平成 18 年電気学会産業応用部門大会, pp.I-481-I-484 (2006)
- (8) J. Itoh, J. Toyosaki, and H. Ohsawa: "High performance V/f control method for PM Motor", Trans. IEEJ, Vol.122-D, No.3 p253 (2002) 伊東淳一・豊崎次郎・大沢博:「永久磁石同期電動機の V/f 制御の高 性能化」, 電学論 D, Vol.122, No.3 p.253 (2002)
- (9) I. Sato, J. Itoh, H. Ohguchi, A. Odaka, and H. Mine: "An Improvement Method of Matrix Converter Drives Under Input Voltage Disturbances", IPEC-Niigata, pp. 546–551 (2005)
- (10) H. Nikkhajoei and M. Reza Iravani: "A Matrix Converter Based Mivro-Turbine Distributed Generation System", IEEE Trans., Vol.20, No.3 p2182 (2005)
- (11) E. Wiechmann, P. Burgos and J. Rodriguez: "Continuously Motor-Synchronized Ride-Through Capability for Matrix-Converter Adjustable-Speed Drives", IEEE Trans., Vol.49, No.2 p390 (2002)
- J. Lettl: "Matrix Converter Induction Motor Drive", EPE-PEMC, pp.787-792 (2006)
- (13) F. Blaabjerg, D. Casadei, Christian Klumpner and M. Matteini: "Comparison of Two Current Modulation Strategies for Matrix Converters Under Unbalanced Input Voltage Conditions", IEEE Trans. Vol.49, No.2, p289, April 2002
- (14) P. W. Wheeler, J. Rodriguez, J. C. Clare, L. Empringham: "Matrix Converters: A Technology Review" IEEE Transactions on Industry Electronics Vol. 49, No. 2, pp274-288, 2002.
- (15) P. W. Wheeler, J. C. Clare and P. Zanchetta: "A Three-Phase Utility Power Supply Based on the Matrix Converter" IAS, pp. 1447-1451, 2004