アクティブバッファを用いた 単相三相電力変換器の出力波形改善法

◎大沼 喜也
 伊東 淳一
 長岡技術科学大学 工学研究科
 ohnuma@stn.nagaokaut.ac.jp

1. はじめに

エアコンや冷蔵庫など電動機による消費は家 庭における消費電力の約4割を占め,現在は単相 電動機に代わり高効率で小型な三相電動機の使 用が進められている⁽¹⁾。しかし,家庭用電源は単 相交流で供給されるため,三相電動機を高効率で 高性能に駆動するには単相三相電力変換が必要 となる。これらの変換器は様々な回路が研究され てきたが,単相交流の電力脈動に起因する大容量 の平滑コンデンサや高調波規制対応のための力 率改善回路が必要となり,さらなる小型化,長寿 命化,高効率化が難しい⁽²⁾。

そこで著者らは、インダイレクトマトリックス コンバータを元にアクティブに電力脈動を補償 する回路(アクティブバッファ)を直流リンクに 並列に接続した新しい回路を提案した⁽³⁾。提案回 路はアクティブバッファの動作により、入出力波 形を正弦波化でき、さらに下記の特長を有する。

(a) 大型なリアクトルや大容量の平滑コンデ ンサが必要ないためシステムの小型化が可能

(b) 電力の半分はダイオード整流器からイン バータに直接供給され,補償回路の損失は少ない ので高効率化が望める

(c) 出力電圧は入力電圧の 0.707 倍出力可能

(d) アクティブバッファの制御に電流センサ やフィードバック制御は不要

本論文では,提案回路の高性能化の手法として, スイッチングパターンを工夫することにより,性 能を悪化することなく,出力電圧波形を改善する 手法を提案する。ここでは出力電圧で発生する誤 差原因を解明し,改善法を提案する。その後,実 験により従来方式との比較を行い,その有用性を 確認したので報告する。

2. 回路構成

図1に提案回路の回路構成図を示す。提案回路 は、電流形として動作するダイオード整流器と電 圧形で動作する三相インバータの直流中間部に、 アクティブバッファ回路を並列接続した構成と なっている。アクティブバッファ回路は、放電回 路と充電回路を別々に有する。放電回路は中間部 に直列にコンデンサとスイッチを接続、充電回路 は中間部からコンデンサに一般的な昇圧回路で 構成する。本提案回路の特徴として、ダイオード からインバータへ流れる電流の主経路にリアク トルやパワー素子を含まないため、導通損失を小 さくできる。バッファ回路は電力の脈動成分のみ しか変換を行わない。また、充電回路と放電回路 は 1/4 周期ごと交互に動作するため、一般的な PFC 回路と比べ小型、高効率化が望める。

3. 制御原理

3.1 スイッチデューティ算出法

提案回路は、入力電流を力率1の正弦波にする ため、バッファ回路で脈動分の電力を補償する。 そのため、バッファ瞬時電力 *pbuf*は出力が三相平 衡負荷であれば、(1)式で表せる。

Fig. 1. Circuit configuration of proposed circuit.

$$p_{buf} = \frac{1}{2} V_{IN} I_{IN} \cos(2\omega t) \tag{1}$$

ただし、 V_{IN} は入力電圧最大値、 I_{IN} は入力電流最 大値、 ω は電源角周波数である。(1)式より p_{buf} が正の期間(- $\pi/2 < 2\omega t < \pi/2$)、放電回路より電力を 放電し(放電期間)、負の期間($\pi/2 < 2\omega t < 3\pi/2$)、充 電回路で充電すれば(充電期間)、電力脈動を補償 できる。

図 2 に提案システムの等価回路を示す。各スイ ッチ Sxx のデューティを d_{xx} とすると,放電期間 中,充電回路は動作しないので($d_l = 0$),入力電 流 i_{rec} を正弦波状に制御するには、 d_{rec} は(2)式、 電力脈動を補償するため d_c は(3)式となる。

$$d_{rec} = \sqrt{2} |\sin(\omega t)| \tag{2}$$

$$d_c = \frac{V_{IN}}{\sqrt{2}v_c} \cos(2\omega t) \tag{3}$$

ただし、 v_c はバッファコンデンサの瞬時値である。 一方充電期間中、放電回路は動作しないので(d_c = 0)、出力電力を一定にするには、 d_{rec} は(4)式を満たせばよい。

$$d_{rec} = \frac{\sqrt{2}}{2|\sin(\omega t)|} \tag{4}$$

また,充電回路はリアクトル電流を不連続モー ドで動作させる⁽⁴⁾。この場合,入力電流を正弦波 にするには,*d*₁は(5)式となる。

$$d_{I} = \sqrt{\frac{2L(v_{c} - v_{in})\left\{I_{IN}|\sin(\omega t)| - \frac{I_{IN}}{2|\sin(\omega t)|}\right\}}{v_{in}v_{c}T}}$$
(5)

ただし、Lは充電回路のインダクタンス、Tはス イッチング周期である。

(5)式において、デューティを算出するには入 力電流の最大値 *I*_{IN}が必要となる。そこで、バッ ファコンデンサの電圧変化分から入力電流を推 定する。放電期間終了時の電圧値を *Vcmin*として 検出し、最高値 *Vcmax*を設定すれば(6)式より *I*_{IN} が算出できる。

$$W_{C} = \frac{V_{IN}I_{IN}}{2\omega}$$

$$I_{IN} = \frac{2\omega W_{C}}{V_{IN}} = \frac{\omega C}{V_{IN}} \left(V_{C\max}^{2} - V_{C\min}^{2}\right)$$
(6)

ただし *C* はバッファコンデンサのキャパシタン スである。(6)式より,コンデンサの電圧を検出 するだけで,入力電流最大値が算出できるので, 電流センサは不要となる。

3.2 空間ベクトル変調方式

提案回路は入力電圧とコンデンサ電圧の 2 つ の電圧を制御し出力電圧を生成する。そのため、 ベクトルを自由に選択、調節できる空間ベクトル 変調方式を応用した制御方式を採用している⁽⁵⁾。 基本ベクトル図において指令値 v^* の領域により 使用するベクトル V_I , V_2 を選定し、指令値のα、 β軸成分 v_{α} , v_{β} と選択した基本ベクトルのα, β 軸成分 $V_{I_{\alpha}}$, $V_{I_{\beta}}$, $V_{2_{\alpha}}$, $V_{2_{\beta}}$ より出力時間比 T_I , T_2 , T_z ε (7)式で算出する。

$$T_{1} = \frac{1}{|A|} \begin{vmatrix} v_{\alpha} & V_{2\alpha} \\ v_{\beta} & V_{2\beta} \end{vmatrix}$$

$$T_{2} = \frac{1}{|A|} \begin{vmatrix} V_{1\alpha} & v_{\alpha} \\ V_{1\beta} & v_{\beta} \end{vmatrix}$$

$$T_{Z} = 1 - (T_{1} - T_{2}) \left(\because |A| = \begin{vmatrix} V_{1\alpha} & V_{2\alpha} \\ V_{1\beta} & V_{2\beta} \end{vmatrix} \right)$$
(7)

次に,(7)式で求めた各出力ベクトルの時間比 を(2)式,(3)式,(4)式で求めたデューティ比で, (8)式のように分配する。

 $T_{1REC} = T_1 \cdot d_{rec} \quad T_{1C} = T_1 \cdot d_c \quad T_{1Z} = T_1 \cdot d_z \quad (8)$ $T_{2REC} = T_2 \cdot d_{rec} \quad T_{2C} = T_2 \cdot d_c \quad T_{2Z} = T_2 \cdot d_z$

 $T_{ZZ} = T_{1Z} + T_{2Z} + T_{Z}$

また,充電期間中 d_cはゼロになる。このこと から,充電期間中は3つのベクトル,放電期間中 は5つのベクトルで出力電圧を形成する。

(9)

3.3 提案するスイッチパルス生成方式

図 3 に従来方式と提案方式のスイッチングパ ターンを示す。放電期間中は5つのベクトルを出 力する必要がある。従来はインバータのゼロ電圧 期間中にスイッチ Sc をスイッチングする方式を 提案している(従来方式)。

一方提案方式は、インバータでは同一の基本ベクトルを出力し、スイッチScをハードスイッチ させ、インバータの印加電圧を変化させて出力ベクトルを移行させる。図3より、提案方式は従来 方式に比ベインバータのスイッチ回数が少ない ことが特徴となる。

図4に制御ブロック図を示す。電源電圧 vm及 び,設定したコンデンサ電圧最大値 Vcmax*ならび に検出した瞬時コンデンサ電圧 vcから,各デュ ーティ指令を求める。その後,インバータ指令よ り各ベクトル出力時間比を計算し,三角波とスイ ッチングテーブルを用いてスイッチングパター ンを生成する。

4. 電圧誤差の原因

出力電圧の誤差の原因はデットタイムによる 影響が挙げられる。そのため、様々な誤差補償法 が提案されている⁽⁶⁾⁽⁷⁾。しかし、どの方式もデッ トタイムより狭いパルスは補償できない。

従来方式では 1 方向のベクトルを drec 分と dc 分の 2 回に分けて出力する。drec や dc はゼロから 大きく変化するので, デットタイムより狭いパル スが多く発生する。そのため出力波形は, 誤差補 償法を適用してもひずみが残る。

しかし,提案方式は1方向のベクトルを出力中 に,スイッチ Scをあえてハードスイッチングさ せ,*drec*分と*dc*分のベクトルを出力するのでイン バータのパルス幅は狭くならない。スイッチ Sc はデットタイムが必要ないので,提案方式はイン

(b) Proposed method (discharge mode) Fig. 3. Switching pattern of conventional and proposed method.

Fig. 4. Control block diagram.

バータのデットタイムによる影響は受けにくく なり、出力波形を改善することができる。なお、 Sc はハードスイッチングとなるが、キャリアー 周期内でのスイッチング回数が減少するので、損 失は増加しない。

5. 実験結果

提案方式の有用性を確認するため、定格1kW の試作機を用い、従来方式との比較検討を行った。 実験条件を表1に示す。実験ではデットタイムの 誤差補償として、パルス幅補償を適用している。 この方式は、誤差分のパルス幅を出力パルスに直 接加減算し補償する方式である⁽⁷⁾。

図5に従来方式と提案方式の実験結果を示す。 出力電圧波形は2次のローパスフィルタ

(LPF)(カットオフ周波数 1kHz)を観測用に用い ている。従来方式では、LPF で観測した出力電 圧波形や出力電流波形にひずみが発生している のに対し、提案方式は波形のひずみが改善されて いることが分かる。

図 6 に入力電流の総合ひずみ率(THD)及び,出 力電流の THD の結果を示す。結果より、入力電 流 THD はどの方式も低い値を示しているのに対 し、出力電流 THD は、軽負荷時に約 9%と大き く改善できる。

図 7 に提案回路の効率と入力力率の測定結果 を示す。結果より、入力力率、効率の差異は無く、 提案方式は従来方式と同等の入力力率 0.99、最 高効率 94.6% を得られる。

6. まとめ

本論文では,提案する単相三相電力変換器にお いて,スイッチングパターンの変更のみで,入力 力率や効率が低下することなく,出力波形を改善 できる方式を提案した。また実験により,出力波 形の改善を確認し,提案方式の有用性を確認した。

なお、本研究の一部は平成21年度産業技術研

Table 1. Experimental parameters.

Items		Value	Items	Value
Input voltage (rms)		200 V	Carrier frequency	10 kHz
Input frequency		50 Hz	Output power	1 kW
Buffer circuit	Maximum capacitor voltage	300 V	Output frequency	30 Hz
	Capacitance	100 µF	Output R-load	~4 Ω
	Inductance	0.25mH	Output L-load	3 mH

究助成事業の支援を受けており,関係各位に感謝 の意を表します。

- <u>文</u>献 (1) 大森英樹・岩井利明・中島昇:電学論 D, Vol.124, No.11, pp.1087-1093(2004)
- (2) 大沼・伊東:平成22年電気学会全国大会,4-057,2010
- (3) 植杉・金澤・蛭間・宮崎・神戸:電学論 D, Vol.119, No.5, pp.592-598(1999)
- (4) 中野・佐藤・難波江:電学論 D, Vol.115, No.5, pp.562-569(1995)
- (5) Y. Ohnuma, J. Itoh: IPEC Sapporo, 2010
- (6) 電気学会 半導体電力変換調査専門委員会編:「パワーエレクトロ ニクス回路」 オーム社 2000
- (7) 加藤, 伊東: 電学論 D, 128 巻, 5 号, pp. 623-630, 2008.