マトリックスコンバータに適用する ダンピング制御のゲイン設計法

小岩 一広*, 伊東 淳一(長岡技術科学大学)

A Gain Design Method of a Damping Control for a Matrix Converter Kazuhiro Koiwa, Jun-ichi Itoh (Nagaoka University of Technology)

1. はじめに

近年、大容量のエネルギーバッファを用いずに交流から 交流へ直接変換できるマトリックスコンバータ(以下 MC) の研究が盛んに行われている⁽¹⁾⁻⁽³⁾。MCは大容量の電解コン デンサがないため、小型, 軽量, 長寿命化が期待できる。

著者らは MC の電圧利用率の問題を解決するため, MC の前段に V 結線チョッパを接続し、電圧が不足する領域の みチョッパにより昇圧する方式を提案した⁽²⁾。V結線チョッ パは電流の通過素子数が少ないため効率低下の影響を抑え ることができる。一方で、入力フィルタの共振が原因で入 力電流がひずみ、システムの安定性を悪化させる。共振は ダンピング制御により抑制できるが、その設計指針は明確 になっていない。

本論文では、ダンピング制御のゲインをダンピング抵抗 接続による共振抑制効果の観点から設計する方法を提案す る。また、1.4kW の誘導性負荷を使用した実機実験により ダンピング制御の有効性について検討する。その結果、最 高効率は95.1%,最大力率は0.996,入力電流の総合ひずみ 率(THD)は 7.6% と得られたので報告する。

2. 回路構成およびゲイン設計

〈2·1〉 回路構成

図1に提案回路の制御構成図を示す。提案回路では昇圧 機能を実現するため、MC の入力側に V 結線型の交流チョ

ッパを接続する。チョッパを V 結線型にすることで MC に 追加する素子は双方向スイッチ4つのみとなる。よって、 提案回路は MC の利点である小型化を維持できる。しかし、 提案回路は入力フィルタによる共振が原因で入力電流波形 にひずみが生じる。共振ひずみを抑制する方法はダンピン グ抵抗を接続する方法、およびダンピング制御を適用する 方法が検討されている。

〈2・2〉 ダンピングゲインの設計法

図2にダンピング制御を適用した場合のチョッパ入出力 応答ブロック図を示す。ここで、K_vは変換器ゲイン、T_{HPF} は HPF の時定数である。また、 β はチョッパの昇圧比であ る。その他の計算条件は表1にまとめる。このときの伝達 関数は(1)式で表せる。

$$\frac{V_{out}}{V_{in}} = \frac{\frac{1}{\beta LC}s + \frac{1}{\beta LCT_{HPF}}}{s^3 + (\frac{1}{T_{HPF}} + \frac{K_v K_d}{L})s^2 + \frac{1}{\beta^2 LC}s + \frac{1}{\beta^2 LCT_{HPF}}}$$
(1)

本論文では、ダンピング制御に必要なゲイン設計をダン ピング抵抗R接続時の共振抑制効果の観点から行う。まず、 フィルタコンデンサCと直列にRを接続した時のチョッパ 入出力応答の伝達関数は次式で表せる。

Fig. 1. Configuration of the proposed circuit.

ここでは、ダンピング制御と抵抗 R の共振の抑制効果が 共振点付近で等しくなるように、ダンピング制御のゲイン K_dを設計する。つまり、共振周波数 *a*_c時に(1)式と(2)式が等 しいとし、ダンピングゲイン K_dを求めると、次式となる。

$$K_{d} = \frac{2L\sqrt{\beta^{2} + \frac{T_{HPF}^{2}}{LC}}}{\beta K_{v}T_{HPF}} \cdot \frac{\zeta}{\sqrt{4\zeta^{2} + \beta^{2}}} \qquad (3)$$

ここで、ζは減衰係数であり、次式で表せる。

$$\zeta = \frac{R}{2} \sqrt{\frac{C}{L}} \tag{4}$$

図 3 にダンピング抵抗 R 接続時とダンピング制御適用時 のゲイン特性を示す。ここで、表 1 の条件をもとに(3)式よ り K_d を求めると、0.018 となる。 ω_c での両者のゲイン特性 を一致させて K_d を設計したことで、等しい共振抑制効果が 得られている。

3. 実験結果

図4に表1の条件と誘導性負荷を用いて提案回路の動作 実験を行った結果を示す。入出力電圧比は1:1を実現し,提 案回路の入力力率はほぼ1.0に制御できている。このとき, 入力電流 THD は7.60%,出力電流 THD は1.58%である。こ こで,THD は基本波周波数の40次までを観測して算出し た。なお、ダンピング制御と等価な共振抑制効果を得られ るR を(3)式により求めると、3.91 Ωとなる。このダンピン グ抵抗による損失は,損失シミュレーションにより 75.9W(出力電力の5.5%)と算出され、ダンピング抵抗で共振 を抑制すると著しく効率を低下させる。

図5に負荷を変化させた場合の効率,力率およびTHD特 性を示す。ダンピング抵抗により共振を抑制した場合、入 力電流 THD は 8%以下に抑制できている。しかし、抵抗損 失の発生により効率は低下する。一方、ダンピング制御を 適用した場合はダンピング抵抗による共振抑制法と比較し て, 効率の低下なしに入力電流 THD を 10% 以下に抑制可能 であることを確認できる。特に 1.4kW 負荷において, 最高 効率 91.5%, 最大力率 0.996, 入出力電流 THD は 7.60% を得 られた。また、ダンピング制御を適用した場合とダンピン グ抵抗を接続した場合の損失はそれぞれ 142W, 72.2W と, ダンピング抵抗で 70W の電力を消費し、シミュレーション 結果とほぼ一致する。したがって、ダンピング制御は抵抗 損失による効率低下なしに THD を抑制できる。以上より, ダンピング制御の有効性を確認できた。なお、本研究は平 成21年度産業技術研究助成事業の支援を受けており、関係 各位に感謝の意を表します。

	-Let
17	511
¥	IĤΛ
~	111/5

- (1) 伊東他, 電学論 D, 124 巻 5 号, P457, 2004
- (2) 小岩他, SPC 長野, SPC-10-129, 2010
- (3) Pawel Szczesniak et al, EPE-PEMC 2008, P165

Table 1. Calculation and experimental parameters.

	_		
Input voltage	115 V	LC filter	2 mH (2.2 %)
Input frequency	50 Hz		13.2 μF(11.9%)
Output voltage	200 V	Boost ratio	1.15
Output frequency	40 Hz	of chopper	1.15
Carrier frequency	10 kHz	Voltage transfer ratio of MC	0.865
Damping gain K_d	0.018	Time constant	2.18 ms
Converter gain K_v	164	of HPF T_{HPF}	5.18 1115
Damping factor ζ	0.162	Damping resistance	3 . 91 Ω

Fig. 5. The characteristics between a damping resistor and a damping control.