エネルギーキャッシュ向けフライホイールの損失分離 田中 賢太* 大沼 喜也 藤森 崇起 伊東 淳一 山田 昇 (長岡技術科学大学)

Loss analysis of a Flywheel Energy Storage System for an Energy Cache Operation Kenta Tanaka*, Yoshiya Ohnuma, Takayuki Fujimori, Jun-ichi Itoh, Noboru Yamada (Nagaoka University of technology)

This paper, evaluates a flywheel system of 15000r/min, 1.5MJ, for an energy cache system. The mechanical loss is calculated from the free-run test, and the copper loss is calculated from the measured current of the motor. As a result, the flywheel loss in the steady state consists of windage loss of 33.5%, the iron loss of 54.8% for the induction motor. Therefore, it is confirmed that the loss reduction for those component is important to obtain high efficiency for the high speed flywheel system.

キーワード:フライホイール,エネルギーキャッシュシステム,損失分離 (Flywheel, Energy cache system, Loss analysis)

1. はじめに

近年,地球温暖化防止の観点から,太陽光や風力といっ た再生可能エネルギーを用いた発電方式の導入が進められ ている。これらの発電方式は、発電時に温室効果ガスであ る二酸化炭素を排出しないクリーンな発電方法であること や、比較的小規模な発電システムで発電可能であるといっ た利点を持っている。しかし、日射量や風速など気象条件 によって出力電力が大きく変動する問題がある。出力が不 安定な発電システムを電力系統と連系すると、系統の電圧 変動や周波数変動を引き起こすため、エネルギー貯蔵要素 を組み合わせ、電力を平準化する必要がある。エネルギー を貯蔵するには、バッテリー、フライホイール(以降 FW)、 電気二重層キャパシタ(以降 EDLC)などが挙げられるが、そ れぞれ異なる特徴を持つ(1)。バッテリーは、エネルギー密度 が高く電力補償量は大きいが、充放電に化学反応を伴うた め,高サイクルの充放電に制約があり寿命も短い。一方, EDLCは、化学反応を伴わず、イオンの移動で電力を貯蔵す るため、充放電に強く、長寿命であり応答速度が速い。し かし、エネルギー密度が低いという欠点を持っている。FW は、消耗部品が FW とモータ/発電機の軸受のみであるため 長寿命であり、短時間の充放電の繰り返しにも強い。また、 電力補償時間は短いが、応答が高速であるため変動周期の 速い微小変動成分の抑制に適している⁽²⁾。

著者らは,耐環境性,メンテナンス性に優れている FW を, 短時間の電力変動を補償するエネルギーキャッシュシステ ム(以降 ECS)に適用することを目指し,15000r/min,1.5MJ の高速回転型フライホイールを内蔵する FW システムを開 発している⁽³⁾⁽⁴⁾。ECS は,FW を一時的な貯蔵要素として利 用することにより,バッテリーの飛躍的な長寿命化や容量 低減を図ることができる。これまで FW はエネルギー密度 を向上させるために,超高速仕様で設計され,そのため磁 気軸受けなどの技術が必要となり,バランス取りも非常に 難しかった。このため,本質的に安価なシステムであるに もかかわらず,コストが上昇していた。そこで,本研究の 目的は,小型,低コストで信頼性の高い FW システムを開 発することにある。そのために,誘導機と FW の構成は横 型を採用し,軸受にはボールベアリングが使用でき,バラ ンス取りが容易な回転速度領域を仕様とする。

本論文では,真空引き状態での定常回転時の損失を求め, 電気的な損失と機械的損失に分離し,各種損失を解析した。 論文では,定常回転時のモータをフリーラン状態にするこ とで機械損と電気的損失を分離する。測定した電流から銅 損を算出し,電気的損失を銅損と鉄損に分離する。次に, シミュレーションによってベアリング損,風損を計算し機 械的損失を分離する。最後に,定常損失の解析結果から, さらなる高効率化の際に重要なポイントを抽出し,その知 見から,FW二号機の設計について検討したので報告する。

2. フライホイールシステムの構成と仕様

図1に製作した FW の概略図,図2に実際のフライホイ ールの写真,表1にその仕様を示す。FW システムは,誘導 機と回転体である FW を組み合わせて構成する。ここでは, 縦型に比べて構造が簡単化できる横型を採用した。また, 近年研究が進められている超伝導磁気軸受けなどの低損失 な軸受は、複雑な制御、装置が必要となることから、シス テムの大型化、コストの増大といった問題を招く⁽⁵⁾。そこで、 本機の軸受には、被膜処理を行ったボールベアリングを採 用し、コストと性能の両立を図っている。

図3に補機類を含めたシステム全体の概略図を示す。FW を駆動するモータには簡単のため誘導機を、電力変換器と して高速機用途の汎用インバータ(FRENIC5000H11シリー ズ, 富士電機)を採用した。また, FW 加速時は誘導機が電 動機として動作するが, FW 減速時には誘導機が発電機とし て動作する。回生した電力を系統に回生するため、電力回 生用の回生コンバータを取り付けている。モータ及び軸受 には、温度過上昇を防ぐため、オイルクーラを用いて冷却 し,風損を低減するため,真空ポンプを用いて FW 密閉容 器内の真空度を高めている。また、システムの特性評価の ため、インバータ、誘導機、真空ポンプ及び、オイルクー ラには電力計を取り付け、冷却系統には流量計及び熱電対 を,誘導機,軸受,密閉容器内には熱電対を取り付けてい る。これらの構成から、FW を真空中で回転させることがで きるため、高速回転時における風損を低減することができ る。

3. 電気的損失の解析方法

本実験では,真空ポンプ,オイルクーラを動作させた後, FW を加速する。インバータの制御には V/f 制御を適用し, 定格回転速度までの加速時間を 680sec とした。

FW の回転速度 15000r/min 定常回転時における実験結果 より,誘導機とFW での定常損失が 4.8kW となることがわ かった。また,測定時における真空容器内の圧力は絶対圧 力で 30kPa としている。

定格回転時に発生する消費電力は、電気的な損失と機械 的な損失の和となる。そこで、これらの損失を分離するた め、定格回転時にモータを電気的に切り離し、機械損のみ でFWを減速させるフリーラン試験を行った。これより、 モータとFWの消費電力4.8kWの内、1.97kWが風損とベア リング損を合わせた機械損となり、2.83kWが電気的な損失 となることがわかった。ここでは、電気的な損失について 詳細な解析を行う。

(3・1) 基本波成分に対する銅損の算出

図4に本実験で使用した誘導機の基本波に対する等価回路を、表2に各パラメータの値を示す。ここで、 R_1 を一次 巻線抵抗、 L_1 を一次漏れインダクタンス、 R_2 'を二次側巻線 抵抗(一次側換算)、 L_2 'を二次漏れインダクタンス(一次側換 算)、 L_{1h} を励磁インダクタンスとする。

誘導機に発生する銅損は、一次側に流れる電流によって 発生する一次銅損と、二次側に流れる電流によって発生す る二次銅損がある。ここでは、二次銅損を計算するため、 二次側に流れる電流 *I*₂ 'を算出する。

(1), (2)式に誘導機の二次入力 *P*₂, 軸動力 *P*_Mの式を示す。 これらの式を用いて, (3)式に示す二次電流 *I*₂ 計算する。

図 1 フライホイールの構成 Fig. 1. Configuration of the Flywheel.

図 2 実際のフライホイールの構成 Fig. 2. Actual Flywheel system. 表 1 フライホイールシステムの仕様 Table 1. Specification of Flywheel unit.

fuele fil speenieuron of filj meet unit			
Outward form	58.25×34×35.3cm		
Diameter of FW	30cm		
Weight of FW	110kg		
Rated speed of rotation	15000rpm		
Accumulated energy	1.53MJ		
Motor capacity	43.4kVA		

図 3 フライホイールシステムの構成 Fig. 3. Configuration of the Flywheel system.

ここで、機械損を軸動力 P_M としている。

$P_2 = 3 \frac{K_2}{s} I_2'^2 \dots ($	1)
$P_M = (1-s)P_2 = 3\frac{1-s}{s}R_2'I_2'^2$ (2)	2)
$I_2' = \sqrt{\frac{P_M}{3\frac{1-s}{s}R_2'}} \dots $	3)

ここで、すべりsは実測データの同期速度と回転子の回転 速度から(4)式によって計算した。

以上の式より求めた二次電流と,実験で測定した一次電流を用いて基本波に対する銅損 P_{Cl} を計算する。ここで,銅損は(5)式によって計算する。

(3・2) 高調波成分に対する損失の計算

インバータを用いて誘導機を PWM 駆動する場合, 高調波 電圧が誘導機に印加される。その結果, 高調波成分による 損失が発生する⁽⁶⁾。

図5にインバータと誘導機の接続図を示す。ここでは、 PSIMを用いたシミュレーションによって、誘導機に印加される線間電圧 Vuvの高調波成分を解析し、これによって発生する損失を算出する。

図6にキャリア周波数16kHzにおける出力電圧の高調波 成分の解析結果を、図7に高調波成分に対する誘導機の一 相分の等価回路を示す。PWM 駆動によって発生する高調波 成分は、基本波成分と比較して十分に高い周波数領域であ るため、基本波に対する等価回路における励磁インダクタ ンスL_{1h}を無視することができる。また、高調波成分に対す るインピーダンスは漏れインダクタンス成分が支配的にな

図7 高調波成分に対する誘導機の等価回路

Fig. 7. Harmonic equivalent circuit.

るため,各高調波成分によって発生する高調波電流は(6)式 で得られる。

高調波成分に対するすべりsは1と見なせるため,図7 における出力を表す要素である $R_2'(1-s)/s$ を無視すること ができる。したがって、高調波成分に対する損失は(7)式に よって求められる。

 $P_n = 3(\mathbf{R}_1 + \mathbf{R}_2) I_n^2$ (7)

図 8 に電気的損失の解析結果を示す。ここで、誘導機の鉄 損は全電気的損失から基本波に対する銅損と高調波成分に 対する銅損を引いた値としている。解析結果より、電気的 損失 2.83kW のうち、92.8%が鉄損であり、電気的損失の大

4. 機械的損失の解析方法

<4·1> 風損の解析

製作したシステムにおける FW 表面とその周囲にある気 体との摩擦損失, すなわち風損 Q_wは, 容器内部の形状が複 雑であるため, 単純な計算式で算出することは難しい。そ こで風損の解析手段として数値流体力学(CFD)を利用した 解析を行った。解析に用いたのは非構造格子系熱流体解析 システム SCRYU/Tetra (ソフトウェアクレイドル製)である。 図9に作成した CFD による流体解析には 3D-CAD による解 析モデルを示す。実際のシステムを忠実に再現したモデル では解析の複雑化, 計算時間の増大などがあるため, 解析 と無関係な部品や機構を省き, 単純化したものとした。

図 10 にメッシュ生成したモデルを示す。これは、解析を 行うために、FW 密閉容器内の流体の流れる空間を細かく刻 んだモデルである。また、表3 に解析条件を示す。流体の 流れは乱流とし、乱流モデルとして標準 k-e モデルによる計 算を行った。初期条件として流体の圧力には 30kPa,温度に は 25℃を与えた。また、境界条件としては外側の流体表面 には静止壁を、FW 表面は流体メッシュ速度と壁面速度を一 致させるようにした。FW の回転に関しては、FW そのもの でなく流体を FW の中心軸まわりに回転させ、相対的に FW を回転させた。回転速度は 8000r/min から 15000r/min まで 1000r/min ごとに変化させ、各回転速度において定常状態と なるまで解析を行った。

図11に回転速度15000r/minにて解析を行った際のFWま わりの流体の流れおよびFW表面の圧力を示す。図12に解 析により得られたFWの回転軸まわりの粘性力を示す。回 転速度8000r/minにおいて風損は0.27kWである風損と回転 速度の関係を関数化した結果,(8)式が得られた。

図 9 CFD 解析用 3D-CAD モデル Fig. 9. 3D-CAD model for CFD analysis.

図 10 解析用メッシュ

Fig. 10. Numerical grid.

表3 CFD による解析の条件

Table 3. Condition of CFD analysis.

Fluid	Air	Pressure	30kPa
		Temperature	25°C
		Density	0.348kg/m ³
		Viscosity	18.3µPa•s
Numerical Grid	269494 elements		
Rotation Speed	8000~15000r/min		

 $Q_w = 1 \times 10^{-8} \omega^2 - 1 \times 10^{-4} \omega + 0.527$ (8)

〈4・2〉 ベアリング損の解析

ベアリング損失 Q_B は、ベアリングの摩擦モーメントMおよび回転速度nから(9)式によって得られる。

 $Q_B = 1.047 \times 10^{-4} nM$ (9)

また,摩擦モーメントは荷重に無関係な摩擦モーメント *M*。 と,荷重に依存する摩擦モーメント *M*」に分離可能で,それ ぞれ次のように表される。

 $M = M_{o} + M_{1}$(10)

$$M_{\rho} = f_{o} \times 10^{-7} (\nu n)^{2/3} d_{m}^{-3}$$
(11)

図 11 流れと圧力の解析結果 Fig. 11. Flow and pressure visualization.

Fig. 12. Windage loss vs rotation speed.

ここで,f_oは軸受の形式と潤滑方法に依存する係数,vは潤 滑油の粘度,d_mは転動体のピッチ内径,f₁は荷重の大きさ および,方向に依存する係数,Pは軸受にかかる荷重である。

図 13 に製作した FW システムのベアリングにかかる荷重 を示す。ベアリングは FW 両端に各 2 個,モータ端に小型 のものが 1 個設置されている。表 4 に各ベアリングの損失 計算に用いた値を示す。

図 14 に表 4 をもとに算出したベアリング損失と回転速度の関係を示す。これより、回転速度の増加に伴い、ベアリング損失は増加し 15000r/min においては 0.52kW となることがわかる。

図15に解析によって得られた風損とベアリング損の和, すなわち機械損と回転速度の関係を実験結果と比較したも のを示す。これより,実測値と解析値がよく一致している ことが確認できる。

5. 損失解析結果

図 16 に損失解析結果を示す。これより,15000r/min 定常 回転時における全損失 4.8kW のうち,33.5%が FW 風損, 54.8% が誘導機の鉄損であった。したがって,FW 高速回転 時において,FW 風損と誘導機の鉄損が支配的となる。FW 風損は,FW 密閉容器内の真空度が低いことにより発生する。 試作一号機では,密閉容器内が絶対圧力で 30kPa であり, 風損を低減するには密閉容器内の真空度をさらに向上させ

図 13 回転部の荷重 Fig. 13. Load of rotating devices.

表4 ベアリング損失の計算条件

Table 4. Conditions for bearing loss calculation.

	f_0	1	
Bearing1,2	f_1	0.000566	
	Viscosity v	20mm ² /s	
	Pitch diameter d _m	60mm	
	Rotation speed n	8000~15000r/min	
	Load P	300N	
Bearing3,4	f_0	1	
	f ₁	0.000566	
	Viscosity v	20mm ² /s	
	Pitch diameter dm	60mm	
	Rotation speed n	8000~15000r/min	
	Load P	166N	
Bearing5	f_0	1	
	f ₁	0.000566	
	Viscosity v	20 mm ² /s	
	Pitch diameter dm	48.5mm	
	Rotation speed n	8000~15000r/min	
	Load P	112N	

る必要がある。また,誘導機の鉄損は一次周波数の増加に 伴い増加する。したがって,鉄損を低減するためには現在 よりも低い回転速度で同等のエネルギーを貯蔵する設計に 変更する必要がある。

6. 二号機の設計に向けて

現在, FW システムの高効率化を目的に FW 試作二号機を 製作中である。このシステムでは,試作一号機で問題とな った密閉容器内の真空度を向上させる。具体的には,一号 機で 30kPa であった真空度を絶対圧力で 1kPa まで向上する。 また,回転体の再設計を行い,二号機では 9000r/min 時に 3.0MJ を貯蔵する仕様とする。これにより,一号機において 15000r/min 時に貯蔵されるエネルギー1.5MJ を,6364r/min で実現できることになり, FW 風損のみならず誘導機の鉄損 も軽減できることが予想される。図 17 に試作二号機の機械 損解析結果を示す。このシミュレーションは,密閉容器の 真空度を 1kPa として計算している。解析結果より,二号機 における 1.5MJ 貯蔵時の風損は 40.0W となり,一号機と比 較して 1/40 に低減できることが予想される。また,ベアリ ング損は 351W となり,回転体の重量が増加により一号機と

比べて増加している。二号機の1.5MJ 貯蔵時の機械損を合 計すると、391.3W となり、一号機の機械損に対して20.1% に低減できることが予想される。また、二号機では1.5MJ 貯蔵時に、一次周波数が一号機の0.424 倍の212Hz となる。 鉄損はヒステリシス損と渦電流損に分離でき、高周波領域 では、周波数の二乗に比例する渦電流損が支配的となる。 そのため、ヒステリシス損を無視すると、鉄損を一号機の 18.0%に低減できることが予想される。

7. まとめ

本論文では、15000r/min、1.5MJのFWシステムを製作し、 特性解析を行うため定常損失の分離を行った。解析結果よ り、製作したFWシステムにおける各種損失を明らかにし た。まず、機械的損失と電気的損失を分離するため、フリ ーラン試験を行い15000r/min定常回転時において、機械的 損失と電気的損失を分離した。機械的損失は、数値解析を 行うことでFW風損が機械損全体の81.9%を占めることを 確認し、電気的な損失解析では、測定電流から誘導機の銅 損を算出することで、誘導機の鉄損が全電気的損失の92.3% を占めることを確認した。これより、FW高速回転時は、FW 風損と誘導機の鉄損が支配的となることが明らかとなり、 FWシステムの高効率化には、これらの損失を低減する必要 があることを確認した。今後は、一号機を改良した試作二 号機の損失解析を行い、解析結果を用いてFWシステムに 最適なモータの設計を行うことを予定している。

Fig. 17. Mechanical loss analysis of a new flywheel.

献

(1) 黒崎他:「普及版環境と省エネルギーのためのエネルギー技術大全」, エヌ・ティー・エス

文

- (2) 矢後賢次,腰一昭:「風力発電の系統連系システム」,富士時報, Vol.78,No.6(2005)
- (3) 村井啓介,春名順之介,伊東淳一,山田昇:「エネルギーキャッシュ システム用高速回転型フライホイールの定常損失評価」,平成22年 度電気学会東京支部新潟支所研究発表会,p.121(2010)
- (4) T. Fujimori, Y. Hirano, N. Yamada, J. Itoh: "Characterization of mechanical battery for energy cache systems", No.0117-1(2011) 藤森崇起,平野佑太、山田昇,伊東淳一:「エネルギーキャッシュシ ステム用機械式パッテリーの特性評価」,日本機械学会北信越支部 48 期総会・講演会講演論文集, No.0117-1 (2011)
- (5) 村上岩範他:「小型高温超電導浮上フライホイールの開発」,日本 AEM 学会誌, vol.17, No.1, pp.132-137(2009)
- (6) T. Ogura, J. Itoh: "Evaluation of Total Loss of Both an Inverter and Motor Depending on Modulation Strategies", SPC-09-184,LD-09-074(2009) 小倉工,伊東淳一:「インバータの運転方式に応じた総合損失の評価」,半導体電力変換リニアドライブ合同研究会,SPC-09-184 LD-09-074(2009)