磁界共振結合による非接触給電用高周波電源に適用する

スイッチング整合回路の基礎検討

◎日下 佳祐 伊東 淳一(長岡技術科学大学)

1.はじめに

近年,磁界共振結合方式による非接触給電が盛んに研究 されている⁽¹⁾。本方式で伝送に用いる共振周波数は伝送距 離等の条件により変化するため,伝送効率を維持するため に駆動用インバータの出力周波数を共振周波数に追従さ せなければならない。駆動用インバータの出力周波数を変 化させた場合,インバータの出力インピーダンスが変化し, 反射電力による損失が発生する。そこで,本論文では出力 周波数によらず電源の出力インピーダンスを制御するス イッチング整合回路(以下,「SMC」)の基礎検討を行った ので報告する。

2. 提案回路

図 1 に提案する SMC を示す。SMC はインダクタンス L_0 とキャパシタンス C_0 による低域通過フィルタ(LPF)を元 に設計され、MOS-FET のスイッチングにより方形波出力 インバータの出力インピーダンスを制御する。LPF のパラ メータを(1)、(2)式に従って設計することで、インバータ の出力インピーダンスを、虚部がゼロである任意のインピ ーダンス Z_0 =Re[Z_0]+j0 に整合を図ることが可能である⁽²⁾。

$$L_{0} = \sqrt{\frac{r_{d}^{2}\omega^{2}\operatorname{Re}[\dot{Z}_{o}]}{r_{d}\omega_{c}^{4} - (\omega_{c}^{2} - \omega^{2})^{2}\operatorname{Re}[\dot{Z}_{0}]}} \dots (1)$$

$$C_{0} = \frac{\operatorname{Re}[\dot{Z}_{o}] - r_{d}}{\omega^{2}L_{0}\operatorname{Re}[\dot{Z}_{o}]} \dots (2)$$

ここで、 ω はインバータの出力角周波数、 ω_c は LPF のカットオフ角周波数、 r_d はデッドタイムによる電圧降下模擬抵抗である。

図 2 に制御ブロック図を示す。SMC は S_1 から S_4 のオン デューティと位相を制御し、インバータの出力周波数に同 期してスイッチング周波数 f_{sw} でスイッチングを行う。本 制御は伝送距離の変動を補償することを目的としている ため、出力周波数と比較して高い周波数応答を必要としな い。スイッチ S_2 及び S_3 はインバータ出力電圧極性に対し て位相シフト指令 θ に従って位相シフト制御を行う。一方、 S_1 及び S_4 は S_2 、 S_3 に対して 180°位相をシフトしたキャリ ア信号によりスイッチングを行う。また、 S_1 から S_4 は 1 つの Duty 信号 D_m によりオンデューティを決定する。

3. シミュレーション結果

図3に周波数を一定としてデューティ D_m 及び位相シフト指令 θ を変化させた場合の出力インピーダンスの変動を示す。ここで、出力インピーダンスの検出法として電流注入法を用いた。位相シフト指令を-90°から0°へ増加させた場合、図3(a)より出力インピーダンスの実部が増加することがわかる。この時、位相シフト指令は出力インピーダンスの虚部に影響しないため、図3(b)に示されるように θ によらず一定値をとる。一方、デューティ D_m を増加させた場合、出力インピーダンスの実部は増加し、虚部が減少するという特性をもつ。 D_m により出力インピーダンスの実部しため、制御パラメータ θ と D_m において実部と虚部を独立に制御することができない。出力インピーダンスの整合を図るためには、実部と虚部の両者を独立に制御する必要があるため、実部と虚部の非干渉化制御を適用する必要がある。

Switched-mode Matching Circuit (SMC)

今後は実部と虚部の非干渉化及び,SMC 設計法の明確 化を行う予定である。

参考文献

- (1) Karalis, et al., Annals of Physics, Vol. 323, No. 1, pp. 34-48 (2008)
- (2) 日下 佳祐, 伊東 淳一, 平成 23 年度電気学会産業応 用部門大会, 1-108-I, pp. 507-510 (2011)