ー般化されたマルチレベル方式を用いたマルチレベルトポロジーに 発生する損失の一般化に関する一考察

樫原 有吾* 伊東 淳一(長岡技術科学大学)

A consideration about the generalization for the power loss of the multilevel topology based on generalized multilevel topology

Yugo Kashihara^{*}, Jun-ichi Itoh, (Nagaoka University of Technology)

This paper discusses a consideration about the generalization for the power loss calculation method of the multilevel topology based on generalized multilevel topology. The power losses of the three three-level inverter topologies are calculated based on the power loss calculation method of the generalized multilevel topology. Thus, the calculated power loss of the three-level DC topology is compared by experimental verification.

キーワード:マルチレベル変換器,インバータ,損失解析

(Multilevel converter, Inverter, Loss analysis)

1. はじめに

近年,様々なマルチレベル変換器の回路トポロジーが提 案,検討されている⁽¹⁾⁻⁽⁵⁾。マルチレベル変換器は,従来の2 レベルの電力変換器と比較すると,①レベル数 n に対しス イッチング素子の耐圧を n-1 分の1に低減できること,②複 数レベルの電圧を出力するので出力電圧の高調波を低減で きることが利点としてあげられる。これらの利点から,低 耐圧で低オン電圧,もしくは低オン抵抗の半導体素子を使 用できるため,高効率な電力変換器を構成できる。そのた め,マルチレベル変換器は高圧大容量化技術だけでなく高 効率化技術として注目されている。

マルチレベル変換器はレベル数に比例して回路内の半導 体素子数が多くなり、回路構成が複雑化する。しかしなが ら、その反面、素子数に比例してスイッチの冗長性も高く なり、レベルごとに様々な回路構成が提案されている⁽¹⁾⁻⁽⁷⁾。

図1に一般化されたマルチレベル方式(以下 GM 方式)の 回路図を示す。先行研究において、マルチレベルトポロジ ーは一般化されており、全てのマルチレベルトポロジーは GM 方式から回路中の素子を追加、変更、もしくは削除す ることで派生できる⁽¹⁾。これは、全てのマルチレベルトポ ロジーの中で GM 方式がスイッチの冗長性が最も高いため である。一方で,これまで提案されてきたマルチレベルト ポロジーは,それぞれに固有の出力電圧パターンがある ⁽²⁾⁻⁽⁷⁾。これまでに著者らは,複数のマルチレベルトポロジ ーに発生する損失について解析を行ってきた^{(8),(9)}。しかし ながら,これらの方法は、トポロジーごとの検討であり, 別のトポロジーとの比較は難しい。そこで,本論文では, GM 方式を用いてマルチレベル変換器に発生する損失の一 般化を目的として検討を行う。これによって,各マルチレ ベルトポロジーのスイッチングテーブルを与えるだけで 全てのマルチレベルトポロジーの半導体素子に発生する 損失を簡単に求めることができる。

本論文では、まず3レベルの GM 方式を用いて3 つの代 表的なマルチレベル方式(ダイオードクランプ方式、フライ ングキャパシタ方式、アクティブ中性点クランプ方式)の動 作を GM 方式のスイッチングパターンを用いて模擬する。 ここで、3 つの方式のレベル数は3として検討する。そして、 GM 方式の損失計算式を用いて各方式の損失計算式を導出 する。最後に導出した各損失計算式の妥当性をシミュレー ションと実機実験により確認し、損失計算式の一般化に対 する考察を行う。

2. マルチレベルトポロジーと回路動作

〈2·1〉一般化されたマルチレベル方式

図1にGM 方式の回路を、図2にBasic P2 Cell 回路を示 す⁽¹⁾。GM 方式は、2つの半導体素子と1つのキャパシタか ら構成された Basic P2 Cell 回路を多段化して構成される。こ の Basic P2 Cell 回路を複数使用して多段化することで簡単 にレベル数を高くすることができる。そして GM 方式は、 キャパシタ C₁の電位をクランプスイッチ Sc₁, Sc₂によって クランプしており、このフライングキャパシタの電位と直 流平滑キャパシタの電位を加減算することで階段状の電圧 を出力する。ここで、GM 方式はキャパシタの電位を一定に バランスさせるためにクランプスイッチによって、負荷電 流とは別に横流が発生する⁽¹⁾。GM 方式において、回路を構 成する半導体素子やキャパシタ素子を変更、削除すること でさまざまなマルチレベル方式に派生することができる。

〈2·2〉ダイオードクランプ方式

図3に3レベルダイオードクランプ方式(以下 DC 方式)の 回路図を示す⁽²⁾。DC 方式は GM 方式を基準に C₁を削除し, S_{C1}, S_{C2}をそれぞれダイオードに置き換えることで派生でき る。そして、ダイオードによってクランプされた直流中性 点電位をスイッチによって選択することで階段状の電圧を 出力する。この方式は、産業界で実用化されており、中電 圧のアプリケーションに広く用いられている。

〈2·3〉フライングキャパシタ方式

図4に3レベルフライングキャパシタ方式(以下 FC 方式) の回路図を示す⁽³⁾。FC 方式は、GM 方式を基準に S_{C1}、S_{C2} を削除することで派生できる。そして、FC 方式は直流中点 の電位とフライングキャパシタの浮遊電位をスイッチング によって加減算することで階段状の電圧を出力する。この 方式は、Basic P2 Cell 回路を並列に接続するだけで簡単に多 レベル化することができるため集積化が容易である。

〈2・4〉アクティブ中性点クランプ方式

図 5 に、3 レベルアクティブ中性点クランプ方式(以下 ANPC 方式)を示す⁽⁴⁾。ANPC 方式は GM 方式を基準に C₁を 削除することで派生できる。この方式はスイッチによって クランプされた直流中性点電位を用いて階段状の電圧を出 力している。この回路は 2 つのスイッチング周波数を有し ており、それぞれ 2 つの Cell に分けることができる⁽²⁾。Cell 1 は出力周波数と同じ周波数でスイッチが駆動するのに対 し、Cell 2 はキャリア周波数でスイッチが駆動するため、ス イッチング損失が小さく他の方式よりも高効率である。

3. マルチレベルトポロジーの損失計算法

〈3・1〉半導体素子の損失計算法

2 章で述べたマルチレベル方式の半導体素子に発生する 損失の計算法について説明する⁽⁸⁾⁽⁹⁾。電力損失は以下の条件 で計算を行う。

1)負荷電流リプルは無視できる(電流源負荷とみなす) 2)キャパシタのリプル電圧は無視できる(直流電圧源とみ

Fig.1. Single leg three-level generalized multilevel converter.

Fig.2.Basic P2 cell circuit.

Fig.3. Single leg three-level diode clamp converter.

Fig.4. Single leg three-level flying capacitor converter.

Fig.5. Single leg three-level active neutral-point-clamp converter.

なす)

半導体素子に発生する損失 P_{sw} は導通損失とスイッチン グ損失,ダイオードに発生する損失 P_Dは導通損失とリカバ リ損失とし,それぞれ(1)~(2)式で得られる。

$P_{sw} = P_{con_sw} + P_{switch} \tag{(}$	(1)
$P_D = P_{con_D} + P_{rec} \qquad ($	2)

ここで、 $P_{con_{SW}}$ は半導体素子に発生する導通損失(W)、 P_{switch} は半導体素子に発生するスイッチング損失(W)、 $P_{con_{D}}$ はダイオードに発生する導通損失(W)、 P_{rec} はダイオードに発生するリカバリ損失(W)である。

導通損失はスイッチ(IGBT, MOSFET)側と環流ダイオード (FWD)側に発生する損失に分けて考えることができる。ここ で、素子に流れる正の電流はすべてスイッチ側に、負の電 流はすべて FWD 側に流れると仮定する。また、MOSFET の場合、オン抵抗が小さければスイッチ側に正負両方に電 流が流れる。しかし、FWD のオン電圧特性を MOSFET と同 ーに設定することで損失は計算できる。スイッチの導通損 失の平均値 *P_{con}* は、スイッチのオン電圧とスイッチに流れ る電流から導出することができ、それぞれ(3)、(4)式にて表 せる。

$P_{Con} = \frac{1}{2\pi} \int_{\alpha}^{\beta} v_{on} i_{sw} dx \dots$	(3)
$v_{on} = r_{on}I + v_0 \dots$	(4)
$I_{sw} = \lambda I_m \sin(\theta + \phi) \dots$	(5)

ここで、 v_{on} はスイッチのオン電圧(V)、 i_{sw} は素子に流れる 電流(A)、 $\alpha \geq \beta$ は電流の流れている期間、 r_{on} はスイッチのオ ン抵抗(Ω)、 v_0 は0Aの時のオン電圧降下(V)、 λ は変調波、 θ は位相、 ϕ は負荷力率角である。ここで、オン電圧は IGBT を想定し、PN 接合による電圧降下と抵抗分にある電圧降下 として(4)式にて表現しているが、MOSFET は抵抗特性であ るため(4)式において $v_0=0$ とすれば表現できる。

次に,出力周波数 1 周期あたりのスイッチング損失とリ カバリ損失は,スイッチング周波数と素子に印加される電 圧と電流から(6)式と(7)式で導出できる。

$P_{switch} =$	$\frac{1}{n-1}$	$\frac{E_{dc}}{E_{dcd}I_{md}} \Big(e_{on} \Big)$	$+e_{off}\Big)f_c\frac{1}{2\pi}\int_{S}$	$I_m \sin(t)$	$(\theta + \phi)d\theta$	 (6)
$P_{rec} = -$	$\frac{1}{n-1}$	$\frac{E_{dc}}{E_{rr}I_{rr}}e_{rr}f_{c}$	$\frac{1}{2\pi}\int_{x}^{y}I_{m}\sin(\theta$	$+\phi d\theta$		 (7)

ここで、 E_{dc} は直流リンク電圧、 e_{on} はスイッチング1回の ターンオン損失、 e_{of} はスイッチング1回のターンオフ損失、 e_{rr} はリカバリ1回のリカバリ損失、 E_{dcd} 及び I_{md} はデータシ ート上のターンオン損失、ターンオフ損失、リカバリ損失 の測定条件時の電圧と電流、 f_c はキャリア周波数である。

〈3·2〉一般化されたマルチレベル方式の損失計算法

表1に3レベル GM 方式のスイッチングパターンを,図6 に GM 方式の出力波形と各スイッチに流れる電流波形を示 す。本節では3.1節で述べた損失計算法に基づいて GM 式の 半導体素子に発生する損失を導出する。表1及び図6より, GM 方式はS₁-S₄のスイッチが出力電圧指令値1周期に対し て PWM 駆動する⁽¹⁾。そのためS₁-S₄の半導体素子に発生す る損失は同じである。ここで、クランプスイッチ S_{C1} , S_{C2} は S_3 , S_4 と同じスイッチングパターンで駆動する。しかし ながらクランプスイッチは任意の電圧を出力するのではな くキャパシタ C_1 の電位をバランスさせる。そのため、負荷 電流とは別にキャリア周期で C_1 の電圧を充放電させるため の横流が発生する。参考文献(1)より、横流によって発生す る損失は負荷電力に対して 1%以下であるため、本論文では 横流による損失を無視できると仮定して検討する。

GM 方式を位相が異なる複数のキャリアを用いた位相シ フト変調方式で動作させるとすると, GM 方式の変調波λは (8)式で得られる。

 $\lambda = a\sin\theta \dots (8)$

ここで, aは変調率である。

GM 方式の半導体素子 1 つのスイッチ側に発生する導通 損失 *P_{GM_con_Sw}*と FWD 側に発生する導通損失 *P_{GM_con_FWD}*は (9), (10)式で得られる

$$P_{GM_{-con_{-}Sw}} = \left(\frac{1}{8} + \frac{1}{3\pi}a\cos\phi\right)r_{on}I_{m}^{2} + \left(\frac{1}{2\pi} + \frac{1}{8}a\cos\phi\right)v_{0}I_{m} \dots (9)$$

$$P_{GM_{-con_{-}FWD}} = \left(\frac{1}{8} - \frac{1}{3\pi}a\cos\phi\right)r_{on}I_{m}^{2} + \left(\frac{1}{2\pi} - \frac{1}{8}a\cos\phi\right)v_{0}I_{m} \dots (10)$$

GM 方式の全ての半導体素子は、同じスイッチング周波数 で動作し、スイッチングを行う期間や印加される電圧も同 じである。そのため、スイッチング損失 $P_{GM_{switch}}$ は(11)式、 リカバリ損失 $P_{GM_{rec}}$ は(12)式で表される。

表 2 に GM 方式が出力可能なスイッチングパターンを示 す。GM 方式のスイッチングパターンは、スイッチ数が 6 個あることから 2⁶の 64 パターン存在する。そのうち、 S_1 と S_2 の上下短絡、 S_3 と S_{C1} の上下短絡、 S_4 と S_{C2} の上下短絡、 S_{C1} と S_{C2} の上下短絡を含むスイッチングパターンと、6 個 のうちいずれか 1 つのみ導通するパターンを除外すると、 表 2 のように 14 パターンのみしか存在しない。ここで、ス イッチングパターン No.14 は、GM 方式の場合、クランプス イッチ S_{C1} 、 S_{C2} とキャパシタ C_1 によって短絡パターンが発 生する。その一方で DC 方式の場合では、0Edc を出力する 唯一のパターンのため表記している。

表 2 のスイッチングパターンと本節で述べた GM 方式の 損失計算式に基づいて, 3 つの 3 レベル方式(DC 方式, FC 方式, ANPC 方式)の損失計算を行う。

〈3·3〉 DC 方式への適用

Table 1 Switching state of three-level GM topology.

No	S_1	S ₂	S_3	S_4	S_{C1}	S_{C2}	Charging / discarging current	Output voltage
1	1	0	1	0	1	0	0	$+1/2E_{dc}$
2	0	1	1	0	1	0	0	+0
3	1	0	0	1	0	1	0	-0
4	0	1	0	1	0	1	0	$-1/2E_{dc}$

表3にDC方式のスイッチングパターンを示す。DC方式 のスイッチングパターンは,表1のGM 方式のスイッチン グパターンと比較してスイッチングパターンの数が少な い。これは、DC 方式は中性点電圧をダイオードによってク ランプしており、他の方式と比較して冗長性が低いからで ある。表3より, GM 方式は DC 方式の 0Edc を出力するス イッチングパターン(表 3 No2)がキャパシタとスイッチによ る短絡パターンのため, DC 方式の 0Edc のスイッチングパ ターンを取ることができない。しかしながら,図3におい て DC 方式が 0Edc を出力するとき、出力電圧指令値が正の 時は D₁, S₁を,一方で,出力電圧指令値が負の時は S₂, D₂ を通過する。従って, GM 方式では, DC 方式の 0Edc のパ ターンを表2のNo.2とNo.9にて模擬できる。以上を踏まえ て,表2のNo.2,4,9,12のスイッチングパターンからDC 方式の動作を模擬し,各スイッチに発生する損失を導出す る。ここで、回路の対称性から S₁ と S₂, S₃ と S₄, D₁ と D₂ に発生する損失は同じであると仮定する。

図7にDC方式のスイッチングパターンを模擬した場合の GM 方式の出力波形と各スイッチに流れる電流波形を示す。 まず、 $S_1(S_2)$ に発生する損失について検討する。 S_1 に流れる 電流実効値は、表 1 のスイッチングパターンで動作させた ときの S_1 に流れる電流実効値と同じになる。従って、DC 方式の S_1 に発生する導通損失 $P_{DC_con_S1}$ は(9)式と(10)式の和 で得ることができ、(13)式で表される。

P_{DC_con_S1} = P_{GM_con_Sw} + P_{GM_con_FWD}(13) S₁ に発生するスイッチング損失は、スイッチが出力周波数 と同じ周期でスイッチングしているため、キャリア周波数 と同じ周期でスイッチングしている素子のスイッチング損 失に比べ十分小さく無視できる。

次に、 $S_3(S_4)$ に発生する損失について検討する。 S_3 の出力 電圧指令値が正の期間に流れる電流実効値は、表 1 のスイ ッチングパターンで動作させたときの出力電圧指令値が正 の期間に S_1 に流れる電流実効値と同じになる。従って、DC 方式の S_3 に発生する導通損失 $P_{DC_con_S3}$ は(9)式と同じ式で得 ることができる。また、 $S_3(S_4)$ に発生するスイッチング損失 P_{DC_switch} は出力電圧指令値の半周期の期間だけキャリア周 波数でスイッチングすることから(14)式で表される。

一方で、 $D_1(D_2)$ に発生する損失は、出力電圧指令値が正の 期間に D_1 に流れる電流実効値は、表1のスイッチングパタ ーンで動作させたときの出力電圧指令値が負の期間に S_1 に 流れる電流実効値と同じになる。従って、DC方式の D_1 に 発生する導通損失 $P_{DC_con_D1}$ は(10)式と同じ式で得ることが できる。また、 $D_1(D_2)$ に発生するリカバリ損失 P_{DC_rec} は $S_3(S_4)$ のスイッチング損失と同様の考えで、(15)式で表される。

Reference Vout 200 0 -200 Iout Isw1 Isw2 TADAY NO DAY DAY Isw3 Isc1 × 1e-20 Isc2 × 1e-20 NIN CONCEANT Isw4 0.04 0.080.06

Fig.6. Operation waveforms of GM inverter.

Table 2 All switching state of three-level GM topology.

No	S_1	S_2	S_3	S_4	S_{C1}	S _{C2}	Output voltage	GM	DC	FC	ANPC
1	0	0	0	0	0	0	$0E_{dc}$	0	0	0	0
2	0	1	0	0	0	1	$0E_{dc}$	0	×	×	0
3	0	1	0	0	1	0	$-1/2E_{dc}$	0	×	×	×
4	0	1	0	1	0	0	$-1/2E_{dc}$	0	0	0	0
5	0	1	0	1	1	0	$-1/2E_{dc}$	0	×	×	0
6	0	1	1	0	0	0	$0E_{dc}$	0	×	0	0
7	0	1	1	0	0	1	$0E_{dc}$	0	×	×	0
8	1	0	0	0	0	1	$+1/2E_{dc}$	0	×	×	×
9	1	0	0	0	1	0	$0E_{dc}$	0	×	×	0
10	1	0	0	1	0	0	$0E_{dc}$	0	×	0	0
11	1	0	0	1	1	0	$0E_{dc}$	0	×	×	0
12	1	0	1	0	0	0	$+1/2E_{dc}$	0	0	0	0
13	1	0	1	0	0	1	$+1/2E_{dc}$	0	×	×	0
14	1	1	0	0	0	0	Short	×	0	×	×

Table 3 Switching state of three-level DC topology.

No	S_1	S_2	S ₃	S_4	Output voltage	DC	GM	FC	ANPC
1	1	0	1	0	$+1/2E_{dc}$	0	0	0	0
2	1	1	0	0	±0	0	×	×	×
3	0	1	0	1	$-1/2E_{dc}$	0	0	0	0

〈3·4〉FC 方式への適用

表4にFC方式のスイッチングパターンを示す。FC方式 の各スイッチのスイッチングパターンと表1のGM方式の S₁-S₄のスイッチングパターンを比較したとき、2つの方式 のスイッチングパターンは同じである。そのため、FC方式 のスイッチに発生する損失も、GM方式に発生する損失と同 様の考えで導出できるため、導通損失とスイッチング損失 は(9)式-(12)式で得ることができる。

<3·5〉ANPC 方式への適用

表 5 に ANPC 方式のスイッチングパターンを示す。ANPC 方式は、DC 方式や FC 方式よりもスイッチの冗長性が高く、 複数のスイッチングパターンで動作させることができる ⁽¹⁰⁾。本節では、3.3 節の DC 方式と同じスイッチングパター ンを用いることを想定した場合、1 スイッチング毎の電流経 路は見かけ上 DC 方式と同じ経路をとると考えることがで きる。従って、ANPC 方式の $S_1 \ge S_2$ に発生する導通損失は (13)式で、 $S_3 \ge S_4$ に発生する導通損失とスイッチング損失 は(9)式と(14)式で、 $S_{C1} \ge S_{C2}$ に発生する導通損失とスイッ チング損失は(10)式と(14)式で得ることができる。

4. 4 つの 3 レベル方式に発生する損失

〈4・1〉シミュレーションによる検討

4つの3レベルインバータの損失を3章で述べた損失計算 式による計算結果とシミュレーション解析による結果と比 較する。

図 8 に GM 方式を用いて各方式のスイッチングパターン を模擬して数式による損失を計算したとシミュレーション による解析を比較した結果を示す。また、表 6 と表 7 に各 変換器の仕様とデバイスパラメータを示す。図 8 において、 4 つの変換器の動作を模擬したときの各スイッチの損失計 算結果は、シミュレーション解析結果と誤差 0.1%以下でよ く一致していることがわかる。

〈4・2〉実験による損失計算式の妥当性の検証

本節では、3章で述べた損失計算式の妥当性を検証するため、3レベル DC 方式インバータを例に取り、実機の損失と計算による損失結果を比較する。

図9に3.3kW 定格の単相ハーフブリッジの3レベル DC インバータを試作し、パワーメータ(WT1600:YOKOGAWA) を用いて測定した損失と各変換器の損失計算式を用いて推 定した損失を比較した結果を示す。図9において3.3kW 定 格運電時の理論損失と実機の損失の誤差率は3レベルDCイ ンバータが1%となり、理論式の妥当性を確認した。軽負荷 時に一致しなくなる原因の1つとして、スイッチング素子 の浮遊容量に電荷が充電され、放電するときにスイッチン グ素子のオン抵抗に流れ、このときに発生する損失が軽負 荷時における誤差として出ていることがあげられる。

Fig.7. Operation waveforms of GM inverter based on switching state of the DC topology.

Table 4 Switching state of three-level FC topology.

No	S_1	S_2	S_3	S_4	Output voltage	FC	GM	DC	ANPC
1	1	0	1	0	$+1/2E_{dc}$	0	0	0	0
2	0	1	1	0	0	0	0	×	×
3	1	0	0	1	0	0	0	×	×
4	0	1	0	1	$-1/2E_{dc}$	0	0	0	0

Table 5 Switching state of three-level ANPC topology.

No	Cell 1		Cell 2			Output		CM	DC	EC				
INO	S_1	S_2	S_3	S_4	S_{C1}	S _{C2}	voltâge	voltâge	voltāge	voltāge	ANPC	GM	DC	гC
1	1	0	1	0	1	0	$+1/2E_{dc}$	0	0	0	0			
2	0	1	1	0	1	0	+0	0	0	×	×			
3	1	0	0	1	0	1	-0	0	0	×	×			
4	0	1	0	1	0	1	$-1/2E_{dc}$	0	0	0	0			

Table 6 Experimental condition.

Rated power	3.3 kW	Output frequency	50 Hz
Input voltage	350 V	Output voltage	115 V
Carrier frequency	20 kHz	Output current	29 A

Table 7 Device parameters.

MOSFET:IXFB170N30P(IXYS)									
V _{DSS}	300 V	ID	170 A						
R _{DS}	18 mΩ (Max.)	V _F	1.3 V (Max.)						
t _r	29 ns	trr	200 ns						
t _f	16 ns								

5. 結論

本論文では、GM 方式を用いてマルチレベル変換器に発生 する損失の一般化を目的として検討を行った。まず、3 レベ ルの GM 方式の損失計算式を導出し、GM 方式で出力可能 なスイッチングパターンを解析した。次に、GM 方式の損失 計算法とスイッチングパターンを用いて、3 つのマルチレベ ル方式(ダイオードクランプ方式、フライングキャパシタ方 式、アクティブ中性点クランプ方式)の動作を模擬し、それ ぞれの損失計算法の導出を行った。最後に導出した各損失 計算式の妥当性をシミュレーション及び実機実験により確 認し妥当性を確認した。

今後は、スイッチングパターンを用いた損失一般化につ いて検討する予定である。

文 献

- (1) F. Z. Peng: "A Generalized Multilevel Inverter Topology with Self Voltage Balancing", IEEE Transactions on industry applications, Vol.37, No.2, pp. 2024-2031 (2001)
- (2) A. Nabae, I. Takahashi, H. Akagi, "A new neutral-point-clamped PWM inverter", IEEE Trans.Industry Applications, Vol.IA-17, 1981, pp.518-523.
- (3) 釡我昌武,成慶珉,徐進,佐藤之彦,大橋弘通:「フライングキャパ シタマルチレベル変換器の集積化の基礎検討」,平成 20 年電気学会 産業応用部門大会,1-82, pp.373-376
- (4) Barbosa, P.; Steimer, P.; Steinke, J.; Meysenc, L.; Winkelnkemper, M.; Celanovic, N: "Active Neutral-point-Clamped Multilevel Converter", Power Electronics Specialists Conference, 2005. PESC '05. IEEE 36th 16-16 June 2005 Page(s):2296 – 2301
- (5) Gateau, G, Meynard, T.A., Foch, H.: "Stacked multilcell converter (SMC) : properties and design", Power Electronics Specialists Conference (2001), 2001, IEEE 32nd Annual
- (6) 徳永翔平, 宗島正和, Hui Zhang, 漆畑正太, 小金沢竹久: 「3 レベル T-type NPC を拡張した 5 レベル変換器」, 全国大会, No4, pp75 (2012)
- (7) ABB RESEARCH LTD.: 多数の電圧レベルを切換えるためのスイッ チギアセル及び変換回路 P2009-525717A
- (8) 樫原有吾,伊東淳一:「3 レベルマルチレベル方式の半導体素子に発 生する損失に対する一考察」,全国大会,NO 4-041, pp. 71-72 (2013)
- (9) 樫原有吾,伊東淳一:「フライングキャパシタ形トポロジーに着目 したマルチレベルコンバータの損失解析とその高効率設計」、平成 25 年度電気学会産業応用部門大会、1-62, pp. I-275 - I-278 (2013)
- (1 0)D. Floricau, G. Gateau, A. Leredde, R. Teodorescu : "The Efficiency of Three-level Active NPC Converter for Different PWM Strategies", 13th European Conference on Power Electronics and Applications, 2009. EPE 2009

Fig.8. Loss analysis of the four three-level inverters.

Fig.9. Loss comparison of three-level DC inverter.