永久磁石同期電動機複数台並列運転における

P形および PI 形ダンピング制御に関する検討

学生員 長野 剛 正員 ゴー テック チャン 正員 伊東 淳一 (長岡技術科学大学)

An Investigation of Proportional and Proportional-integral Damping Controls for Multi-parallel Motor Drive System of Permanent Magnet Synchronous Motors Tsuyoshi Nagano, Student Member, Goh Tech Chiang Jun-ichi Itoh, Member (Nagaoka University of Technology)

This paper discusses and evaluates the performances of P (Proportional) and PI (Proportional-integral) damping controls in a multi-parallel connected motor drive system of the Permanent Magnet Synchronous Motors (PMSMs). From the stability analysis of the root locus, it is confirmed that the PMSM achieved a better stability by applying the P damping control in the proposed system better than the PI damping control. Moreover, the relationship among the damping gain and the output power of the auxiliary inverter and the overshoot of the rotational speed is clarified. Furthermore, the experimental and calculation results show that the power capacity of the auxiliary inverter is increased by applying the PI damping control.

キーワード: 永久磁石同期電動機, 並列運転, V/f 制御, ダンピング制御 Keywords : Permanent Magnet Synchronous Motor, Parallel operation, V/f control, Damping control

1. はじめに

近年,省エネルギーの観点から,永久磁石同期電動機(以下, PMSM)の駆動方法に関する研究が盛んに行われている。誘導 電動機では1台のインバータで複数台の誘導電動機を駆動す る群運転が可能であるが,PMSMでは磁極位置に応じて電流 を制御しなくてはならないため,1台のインバータで群運転 することはできない。そこで,2台のPMSMを駆動可能なキ ャパシタ中性点を利用したインバータ⁽¹⁾や5レグインバータ ⁽²⁾⁽³⁾,9スイッチインバータ⁽⁴⁾⁽⁵⁾などの電力変換回路に関する 研究が盛んに行われている⁽⁶⁾。上記の電力変換回路は2台の PMSMを独立駆動可能であるが,PMSMの並列台数が3台以 上の場合には上記の電力変換回路を直接適用することは不 可能である。また,これらの回路はインバータの電圧利用率 が制限されることや,デバイスの電流容量が増加するなどの 問題点がある。

そこで,著者らはこれまでに別途で固定子に補助巻線を設けた PMSM(補助巻線付き PMSM)と補助インバータを用い,並列運転時に問題となる乱調を抑制するダンピング制御を 提案している。この方法は PMSM を 3 台以上で並列運転が可能であり,これまでシミュレーションによる安定した並列 運転動作と実験にてダンピング制御の乱調抑制効果を確認 している^の。

通常,ベクトル制御の速度制御器では,速応性と安定性の 観点から PI 制御の構成をとる。一方,安定化のために補助 インバータに適用しているダンピング制御の構成はベクト ル制御における速度制御器のP制御と同様の構成についての み議論してきた。そのため、提案システムにおけるダンピン グ制御を PI 制御器で構成した場合については明らかにされ ていない。

そこで本論文では、安定性および速度のオーバーシュート、 補助インバータに要求される出力電力の観点から、提案シス テムに適用する P 制御構成と PI 制御構成のダンピング制御 を比較し、議論する。本論文の構成は以下のとおりである。 まず、提案システムとダンピング制御の構成について述べる。 次に、MG セットで構成した提案システムの状態方程式から 特性方程式を導出し、根軌跡から各ダンピング制御を適用し た際の安定性を議論する。更に各ダンピング制御を適用した 際の実機検証、および速度のオーバーシュートと補助インバ ータの出力電力について考察する。その結果、P 制御とは異 なり、PI 制御構成のダンピング制御を適用した場合、システ ムが不安定になること、P 制御構成のダンピング制御と比べ て、補助インバータ出力電力が増加することを明らかにした ので報告する。

2. PMSM 複数台並列運転システムの構成

〈2・1〉提案システム

図1に提案システムの構成を示す。PMSM は別途にダンピング制御用の補助巻線を設けたものを専用設計し、補助巻線は主巻線と同スロットに設置する。提案システムではメイン

と補助用の2種類のインバータが存在する。メインインバー タは大容量を想定しており,複数台の PMSM を群運転し, V/f 制御にて制御する。一方,各 PMSM に付随する補助イン バータは,補助巻線を介して乱調により生じたトルク振動を 打ち消すトルクが生じるように電流を PMSM に流すことで, 乱調による振動トルクを相殺する。ここで,補助巻線および 補助インバータは主巻線およびメインインバータに対し,十 分小さい定格容量に設計する。その結果,提案システムでは 出力トルクおよび回転速度に乱調が生じず,並列運転を可能 にする。なお,各補助インバータが各々の PMSM で生じる 乱調を抑制するため,3台以上の並列運転でも同様のシステ ムで安定化が可能である。この結果,各々の PMSM に中容 量のインバータを接続するシステムに比べ,大容量のメイン インバータ1台に複数の PMSM を接続し,小容量の補助イ ンバータを接続することで低コスト化が望める。

〈2・2〉提案システムの制御ブロック

図3に提案システムの制御ブロック図を示す。メインイン バータにはV/f制御,補助インバータにはベクトル制御およ び比例制御の速度制御系を付加している。各補助電力変換器 の座標軸は,通常のベクトル制御と同じく,d軸を永久磁石 がつくる磁東ベクトルと一致させる。

図3に V/f 制御器の $\gamma\delta$ 座標系とモータの dq 座標系の関係を 示す。V/f 制御では、インバータ出力電圧ベクトル方向を δ 軸、 δ 軸より 90°遅れた軸を γ 軸として制御器の直交座標を定義 している。そのため、dq 座標系と制御器の $\gamma\delta$ 座標系では常に 負荷角分のずれが生じている。図3における速度指令と実回 転速度と負荷角の関係を(1)式に示す。

 $p\delta = \omega^* - \omega$ (1) 乱調発生時には負荷角が振動する。そこで,(1)式より負荷角 の微分 $p\delta$ が制御器の角速度 $\omega^* とモータ座標系の角速度\omegaの$ 差であることに着目し,図2のように速度指令と回転角速度 の偏差を入力としてダンピング制御により,q軸電流指令 i_q^* を生成する。ダンピング制御はベクトル制御の速度制御器と 同様の構成になるが、V/f 制御よりも遅い応答速度に設計す ることで、V/f 制御が設定する速度指令に対して、変動分の みを補償する形で動作する。なお、磁極位置の情報は簡便の ため、センサ付きを仮定するが、センサレスベクトル制御の 技術を用いて、推定することも可能である。

〈2・3〉 ダンピング制御の構成

図4に提案システムにおけるダンピング制御の構成を示す。 図4(a)はP制御構成,図4(b)はPI制御構成のダンピング制御 となる。前節より,ダンピング制御では(1)式にもとづき,ベ クトル制御の速度制御器と同様の構成をとることで,負荷角 の変動 $p\delta$ を補償するq軸電流指令 i_q *を生成する。図4(a)のP 制御構成は,比例ゲイン K_d のみのため,P制御の自由度は1 となる。一方,図4(b)のPI制御構成は,比例ゲイン K_d と積 分時間 T_d をもつため,PI制御の自由度は2となり,P制御に 比べて速度のオーバーシュートを改善が見込めるが,I制御 による補助インバータ出力電力が増える恐れがある。

Fig.4.A kind of the damping control.

3. 根軌跡による P 制御と PI 制御の安定解析

提案システムにおける補助インバータの制御では、同期リ アクタンスとモータのイナーシャの共振による速度やトル クの振動を抑制しなければならない。そこで、P制御構成の ダンピング制御と PI 制御構成のダンピング制御を適用した 場合における速度の安定性について考察する。本論文の制御 系の解析は、簡単化のため、d 軸インダクタンスと q 軸イン ダクタンスが等しい SPMSM を対象とした解析を行うが、突 極比が異なる IPMSM でも同様の効果が得られる。

図5に提案するシステムの検証で使用するPMSMのモデル を示す。提案システムでは、通常のPMSMと異なり、ダン

Figs.5. Simulation model of the PMSM in addition the auxiliary windings for damping control.

ピング巻線を設けた特殊な PMSM を使用する。そのため, 本来,主巻線と補助巻線の間には磁気的な相互干渉が生じる ため,制御が複雑化する。そこで今回は磁気的相互干渉を無 いものとし,MGセットの構成で制御の検証を行う。状態方 程式は図5に示すようなMGセットの構成で議論する。

V/f 制御では磁極位置に応じて電流を制御しないため,メ イン側は推定回転座標系の電圧電流方程式となる。一方で, 補助側はベクトル制御のため,dq座標系の電圧電流方程式と なる。メイン側の電圧電流方程式を(2)式に,補助側の電圧電 流方程式を(3)式に,トルク方程式を(4)式に示す。

$$\begin{bmatrix} v_{M\gamma} \\ v_{M\delta} \end{bmatrix} = \begin{bmatrix} R_M + pL_M & -\omega^* L_M \\ \omega^* L_M & R_M + pL_M \end{bmatrix} \begin{bmatrix} i_{M\gamma} \\ i_{M\delta} \end{bmatrix} + \omega_{re} \psi_{mM} \begin{bmatrix} \sin \delta \\ \cos \delta \end{bmatrix} . (2)$$
$$\begin{bmatrix} v_{Ad} \\ v_{Aq} \end{bmatrix} = \begin{bmatrix} R_A + pL_A & -\omega_{re} L_A \\ \omega_{re} L_A & R_A + pL_A \end{bmatrix} \begin{bmatrix} i_{Ad} \\ i_{Aq} \end{bmatrix} + \begin{bmatrix} 0 \\ \omega_{re} \psi_{mA} \end{bmatrix}(3)$$

$$T = T_M - T_A = P_f \psi_{mM} (i_\gamma \sin \delta + i_\delta \cos \delta) - P_f \psi_{mA} i_q \dots \dots \dots (4)$$

ただし, R: 固定子巻線抵抗, L: 同期リアクタンス, Ψ_m : 永久磁石の鎖交磁束, P_f : 極対数(今回は同一), J: 慣性モー メントである。また, サフィックスの M はメイン側, A は 補助側を指す。

実機ベースの提案システムにおける状態方程式を(6)式に 示す。(2),(3),(4)式は非線形であるため、定常状態近傍で 線形近似を行い,(1),(5)式に代入して状態方程式を求めると, (6)式となる。(6)式は6次の状態方程式となるが安定性を簡単

^{*1}In the case of P type, $T_d = \infty$

Fig.6.State variable diagrams of the auxiliary inverter control. に議論するために機械系時定数が電気系時定数よりも十分 大きいとして2次系に近似する。なお,サフィックスの0は 動作点での値を示す。また、ベクトル制御に非干渉制御適用 していることを前提としている。

2 次系に近似した提案システムの状態方程式を(7)式に示す。 (7)式の状態遷移行列 A より、 ω L>>R として、特性方程式を 求めることができる。(7)式より、補助インバータを駆動せず、 メイン側のみの単純な V/f 制御で駆動した場合における制動 係数と固有角周波数を(10)、(11)式に示す。なお、 $\Delta v_{j}=0$ とし て駆動している。

$$\zeta = 0 \quad \dots \qquad (10)$$

$$\omega_n = \frac{P_j \psi_{mM}}{\sqrt{JL_M}} \quad \dots \tag{11}$$

以上のように単純な V/f 制御で駆動した場合,制動係数 ζ が 0 となるため,乱調が生じ,不安定になることがわかる。 図 6 に図 2 を基にした P 制御および PI 制御構成のダンピン グ制御を適用した補助インバータの制御系の状態変数線図 を示す。図 6 より,P 制御,PI 制御時のメインインバータの る軸電圧指令を(12)式に,補助インバータの q 軸電圧指令を (13)式に,電流制御の積分器の入力 $px_1 \varepsilon$ (14)式に,ダンピン グ制御の積分器の入力 $p\Delta x_2 \varepsilon$ (15)式に示す。なお,P 制御の 場合には,積分時間 $T_d \varepsilon \infty$ とする。

$$\Delta v_{M\delta} = \psi_{mM} \Delta \omega^* \tag{12}$$

$$\Delta v_{Aq} = -K_i K_d \left(\Delta \omega^* - \Delta \omega_{re} \right) - \frac{K_i}{T_d} \Delta x_2 - K_i \Delta i_{Aq} + \frac{1}{T_i} \Delta x_1 \dots \dots (13)$$
$$p \Delta x_1 = -K_i K_d \left(\Delta \omega^* - \Delta \omega_{re} \right) - \frac{K_i}{T_d} \Delta x_2 - K_i \Delta i_{Aq} \dots \dots \dots (14)$$

ここで図 6 における電流制御の応答がダンピング制御(速度

Table 1. Verification condition

	$PM_1\&PM_2$
Rated power [W]	800
Rated speed [min ⁻¹]	2000
Rated torque [Nm]	3.82
Rated current [A]	8.2
Number of pole pairs P_f	2
Synchronous inductance $L_M L_A$ [mH]	3.78
Armature resistance $R_M R_A [\Omega]$	0.425
Electro-motive force constant $\psi_{\rm M} \psi_{\rm A}$ [Vs/rad]	0.233
Inertia momet $J_M J_A$ [kgm ²]	0.018

制御)の応答よりも十分速いとした場合,電流制御のループゲインは1とみなすことができる。そのため,積分器出力の状態変数 Δx_1 は無視でき,(13),(14)式は(16),(17)式になる。

 $p\Delta x_1 = 0 \quad \dots \qquad (17)$

(7)式に(5)式,(12)式および(16)式を代入することで、ダンピング制御を適用した際の状態方程式を得ることができる。

図 7 にダンピングゲイン K_d を変化させ,(7),(15),(16)式 を基に求めた単純な V/f 制御で駆動した時と P 制御構成,PI 制御構成のダンピング制御適用時の極配置の推移(根軌跡)を 示す。また,検証は図 5 と同じ構成で行い,検証した際のパ ラメータを表 1 に示す。なお,違いをわかりやすくするため に,PI 制御での積分時間 T_d は 0.025 としている。単純な V/f 制御で駆動した場合(〇)では,虚軸上に極が存在するため, システムが不安定であることがわかる。一方で,P 制御構成 のダンピング制御(●)を適用した場合,虚軸上にあった極が 負側に移動し、システムが安定になっていることが確認でき る。P および PI 制御構成のダンピング制御適用時の極を(18), (19)式に示す。

$$s = -\frac{3}{2} \frac{P_{f}^{2} \psi_{m}}{2J} K_{d} \pm \frac{P_{f} \psi_{m}}{\sqrt{JL_{M}}} \sqrt{\left(\sqrt{\frac{3}{2}} P_{f} \frac{K_{d}}{2} \sqrt{\frac{L_{M}}{J}}\right)^{2} - 1} \dots \dots \dots (18)$$

$$s = 0, -\frac{3}{2} \frac{P_{f}^{2} \psi_{m}}{2J} K_{d} \pm \frac{P_{f} \psi_{m}}{\sqrt{JL_{M}}} \sqrt{\left(\sqrt{\frac{3}{2}} P_{f} \frac{K_{d}}{2} \sqrt{\frac{L_{M}}{J}}\right)^{2} - 1 + \frac{3}{2} \frac{L_{M} K_{d}}{\psi_{m} T_{d}}} (19)$$

(19)式より, PI 制御構成のダンピング制御(■)では原点にあ る極を移動させることができないことがわかる。図 7 より, PI 制御構成のダンピング制御を適用した場合,ダンピングゲ インや積分時間の調節では移動できない極が常に原点に存 在するため,不安定である。これより,通常のベクトル制御 とは異なり, PI 制御器を適用してしまうと,システムの不安 定化を招くことが確認できる。このことからも,通常の速度 制御器と同様の設計方法では,ダンピング制御のゲインを設 計できないことがわかる。

したがって,根軌跡による安定解析の結果,PI形ダンピン グ制御を適用した場合,移動できない極が存在するため,シ ステムが不安定になる。一方で,P制御のダンピング制御を

Fig.7.Root locus with the control structures in the proposed system.

Fig. 8.Experimental construction in order to verify the suppress effect of damping control

適用した提案システムでは、乱調による速度振動を抑制し、 システムの安定化を図ることができる。

4. ダンピング制御による乱調抑制の実験結果

前章において,根軌跡による P 制御構成と PI 制御構成のダ ンピング制御の安定性について議論した。本章では,実験に より単独運転時の各ダンピング制御の乱調抑制効果を検証 する。

図8にダンピング制御の乱調抑制効果の検証に使用した実 験構成を示す。安定解析と同様に、磁気的な相互干渉が生じ、 制御が複雑化するため、そこで無負荷時、磁気的相互干渉を 無いものとし、MG セットで構成した。

図9にダンピング制御適用前後での加速試験結果を示す。 図 9(a)はダンピング制御適用前,図 9(b)は P 制御構成のダン ピング制御適用後,図9(c)はPI制御構成のダンピング制御適 用後の試験結果である。加速試験では 720 r/min から 1800 r/min まで 0.2 sec で加速している。また、本実験ではトルク を直接観測することができないため、代わりに各モータの q 軸電流を観測することで抑制効果を確認している。ダンピン グ制御を適用していない図 9(a)では、メインインバータによ り従来の V/f 制御にダンピング制御を付加せずに駆動してい るため、加速直後にメインインバータのq軸電流に6A,速 度に 400 r/min の大きな振動が発生し、乱調が起きている。 従来では、1 台の PMSM につき 1 台のインバータで駆動する 場合,1台のインバータで V/f 制御でもダンピング制御が可 能であるが(5),1台のインバータで複数台のモータを駆動す る場合、上記の方法では乱調を抑制することができない。そ こで、補助巻線と補助インバータを用いた P 制御構成のダン ピング制御を適用すると、図9(b)のように、加速直後に補助 インバータがトルク制御を行い、乱調を抑制する。そのため、

Figs.9.Acceleration test with/without the damping control.

主電力はメインインバータから供給されているにもかかわ らず,加速直後の振動はほぼ発生しておらず,図9(a)と比較 して定常時の速度振動は400 r/min からほぼ0 r/min に抑制し ており,メインインバータのq軸電流は振動せず,良好な結 果が得られる。一方で,PI制御構成のダンピング制御を適用 した図9(c)では,図9(a)と比較して,図9(b)と同様に,定常 時の速度振動は400 r/min から0 r/min に,電流振動はほぼ0A に抑制している。しかし,図9(b)と比較した場合,シミュレ ーションと同様に,加速中に補助インバータのq軸電流に定 常分が重畳していること,メインインバータのq軸電流が小 さくなっていることから,モータ駆動分のトルクも補償して いることがわかる。そのため,PI制御を適用した場合,補助 インバータ容量の増大につながる。

5. 加速中の補助インバータの平均出力電力と速度 のオーバーシュートに関する考察

前章では,実機により単独運転時の各ダンピング制御の乱 調抑制効果を検証した。本章では,伝達関数から時間応答を 求め,ダンピングゲインと加速中の補助インバータの平均出 力電力と速度のオーバーシュート量の関係について考察す る。

3 章で状態方程式を導出しているため、容易に速度指令から 速度までの伝達関数を求めることができる。速度指令から速 度までの伝達関数を(20)式に示す。(20)式のランプ応答から逆 ラプラス変換により時間応答を求め、さらに時間微分をする ことで、オーバーシュートが発生する極値を求める。ここで は簡単化のため、 $\delta_{0}=0$ 、 $i_{My0}=0$ 、 $i_{Md0}=0$ とする。速度のオーバ ーシュート量を(21)式に、制動係数を(22)式、および固有角周 波数(23)に示す。ここで、 α :加速度を表す。

$$\zeta = \frac{\sqrt{\frac{3}{2}} \frac{P_f K_d}{2} \sqrt{\frac{L_M}{J}}}{\sqrt{\left(\frac{L_M K_d}{\psi_m T_d} + 1\right)}} \dots (22)$$

$$p_n = \sqrt{\frac{3}{2}} \frac{P_f \psi_m}{\sqrt{JL}} \sqrt{\frac{L_{Main} K_d}{\psi_m T_d} + 1} \qquad (23)$$

補助インバータ出力電力は損失を無視すれば,補助インバ ータに接続されているモータの機械出力に依存する。しかし, モータの機械出力は速度とトルクの積であり,非線形である ため,前章と同様に線形化を行い,補助インバータ出力電力 の伝達関数を求める。補助インバータ出力電力の伝達関数を (24)式に示す。(24)式は,速度指令*ω**から補助インバータ電 力までの伝達関数である。(24)式のランプ応答から逆ラプラ ス変換により加速時の時間応答を求め,時間応答から加速中

$$\frac{\Delta \omega_{re}}{\Delta \omega^{*}} = \frac{\frac{3}{2} \frac{P_{f}^{2} \psi_{mM}}{J}}{s^{2} + \frac{3}{2} \frac{P_{f}^{2} \psi_{mM}}{J} K_{d} s + \frac{3}{2} \frac{P_{f}^{2} \psi_{m}}{J} \left(\frac{\psi_{mM}}{L_{m}} + \frac{K_{d}}{T_{d}} \right) \left\{ \frac{\psi_{mM}}{L_{m}} + \frac{K_{d}}{T_{d}} - s \left(K_{d} + \frac{\left(i_{My} \cos \delta_{0} + i_{M\delta} \sin \delta_{0} \right)}{\omega_{0}} - \frac{\psi_{mM}}{L_{m}} \sin \delta_{0} \right) \right\} \dots (20)$$

$$\frac{\Delta P_{A}}{\Delta \omega^{*}} = \frac{\frac{3}{2} P_{f} \psi_{mM} K_{d} \omega_{0} \left(s^{2} + \left(\frac{3}{2} \frac{2P_{f}^{2} \psi_{mM}}{J} K_{d} + \frac{1}{T_{d}} \right) s + \left(s - \frac{1}{T_{d}} \right) \frac{3}{2} \frac{P_{f}^{2} \psi_{mM}}{J} \left(\frac{\left(i_{My} \cos \delta_{0} + i_{M\delta} \sin \delta_{0} \right)}{\omega_{0}} - \frac{\psi_{mM}}{L_{m}} \sin \delta_{0} \right) \right)}{\left(s^{2} + \frac{3}{2} \frac{P_{f}^{2} \psi_{mM}}{J} K_{d} s + \frac{3}{2} \frac{P_{f}^{2} \psi_{mM}}{J} \left(\frac{\psi_{mM}}{L_{m}} + \frac{K_{d}}{T_{d}} \right) \right) \right) \dots (24)$$

Fig.10.Relationship between the damping factor and the overshoot of the rotational speed.

の補助インバータの平均出力電力を求める。ここでも簡単化のため、 $\delta_0=0, i_{M\chi0}=0, i_{M\chi0}=0$ とする。

図 10 に(21)式~(23)式を用いて導出した表1の条件におけ る定格加速時間で速度0.8p.u.から0.1p.u.加速させた際の制動 係数と速度のオーバーシュート量の関係を,図11に(24)式を 逆ラプラス変換し,時間応答から導出した加速中の補助イン バータの平均出力電力と制動係数の関係を示す。なお、ダン ピングゲインは制動係数により規格化している。図10より, 制動係数の増加に伴い,速度のオーバーシュート量は減少し ている。P 制御と PI 制御を比較すると,積分ゲインが大きく なるほど、制動係数が大きい時のオーバーシュート量を小さ く抑えていることがわかる。一方で、図11では、P制御およ び PI 制御ともに制動係数の増加に伴い、平均出力電力が増 加している。しかし、P 制御適用時に比べて、PI 制御適用時 の方が平均出力電力は大きく,積分時間が0.01の時,速度の オーバーシュート量が 0.01p.u.となる点において(制動係数 0.5),補助インバータの出力電力が 0.3 p.u.(240W)大きい。こ れは実験結果と同様に積分ゲインによって補助インバータ がモータ駆動分のトルクを出力していることが原因である。 したがって、補助インバータ容量低減の観点からも、PI制御 構成のダンピング制御よりもP制御構成のダンピング制御が 望ましい。また,(21)式および図10,図11を用いることで, オーバーシュート量および補助インバータ容量の仕様が決 定すれば、制動係数およびダンピングゲインを設計すること できる。

6. まとめ

本論文では3台以上のPMSM並列運転を実現可能なPMSM の複数台並列運転システムにおけるダンピング制御の構成 について議論した。根軌跡による安定解析を行い,PI制御構 成のダンピング制御を適用した場合,システムが不安定にな ること,P制御構成のダンピング制御を適用することでシス テムの安定化を図ることができることを明らかにした。さら に、ダンピングゲインと加速中の補助インバータの平均出力 電力と速度のオーバーシュートの関係について議論した。実 験結果および伝達関数より導出した時間応答からの考察よ

Fig.11.Relationship between the damping factor and the average output power of the auxiliary inverter.

り、補助インバータ容量低減の観点からも、PI制御構成のダ ンピング制御よりもP制御構成のダンピング制御が望ましい ことを明らかにした。

今後の課題は,提案システムに適用するモータ構造の検討, 主巻線と補助巻線間に生じる磁気干渉に対する非干渉制御 の検討が挙げられる。

なお,本研究の一部は NEDO 平成 23 年度 課題設定型産業 技術開発費助成事業の支援を受けており,関係者各位に感謝 の意を表します。

文 献

(1) 星,柴田:「永久磁石同期電動機の2台一括制御用インバータの コンデンサ電圧補償法に関する一考察」,平成20年電気学会産業応 用部門大会, pp.357-358 (2008)

 (2) 岡, 松瀨:「2 アーム変調適用 5 レグインバータの PWM 制御法」, 電学論 D, 129, pp.811-816 (2009)

(3) Ibrahim, Z.; Lazi, J.M.; Sulaiman, M.: "Independent speed sensorless control of dual parallel PMSM based on Five-Leg Inverter", Systems, Signals and Devices, 9th International Multi-Conference on 2012, pp1-6 (2012)

(4) 小南,藤本:「2つの負荷に対して振幅・周波数を独立制御可能な 9スイッチインバータの提案」,電学論 D,128, pp.561-568 (2008)

(5) Seyed Mohammad, et al.: "Space Vectors Modulation for Nine-Switch Converters", IEEE TRANSACTIONS ON POWER ELECTRONICS, vol.25, pp.1488-1496, 2010

(6) "D. Bidart, M. Pietrzak-David, P. Maussion, M. Fadel: [Mono inverter dual parallel PMSM - Structure and Control strategy], IECON'08, pp.268-273 (2008)"

(7) T. Nagano, J. Itoh: "Design of Multi-Parallel Drive Technique for System with Numbers of Permanent Magnet Synchronous Motors", PEDS, pp. 193-198 (2013)

(8) 伊東, 豊崎, 大沢:「永久磁石同期電動機の V/f 制御の高性能化」, 電学論 D, 122, pp.253-259 (2002)

(9) P. D. Chandana, et al. : "A Sensorless, Stable V/f Control Method for Permanent-Magnet Synchronous Motor Drives", IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 39, pp.783-791 (2003)