同一温度に制御した2つのチャンバーを用いた 高精度損失測定法のチャンバー体積の検討

濁川 厚志*,伊東 淳一(長岡技術科学大学)

Consideration on Chamber Volume of High-precision Measurement Method for Power Converter Loss by the Two Chambers at the Same Temperature Atsushi Nigorikawa, Jun-ich Itoh (Nagaoka University of Technology)

Atsushi Migorikawa, Jun ich iton (Magaoka University of i

1. はじめに

近年,半導体素子や磁性材料の性能向上により,電力変換器の高効率化が進んでいる。その結果,電力変換器の損失が小さいため,正確な損失評価が困難となっている。損失評価の方法として,パワーメータを用いて入出力電力を測定し,その差分から導出する方法がある⁽¹⁾。しかし,この方法は入出力電力に対する損失の割合が非常に小さく,測定結果に測定レンジのフルスケール誤差が含まれる。

一方,他の損失測定法として,電力変換器からの発熱量を用 いて,損失を導出する熱量測定法がある⁽¹⁾。この測定法は,電 力変換器から発生する熱量を精密に測定することで,損失を導 出する。そのため,精密な熱量測定には恒温槽が必要である。 しかし,恒温槽は高価であるため,構成システムが高コストとな る。また,温度が飽和するまでに時間を多く消費する⁽²⁾。

本論文では,提案している低コストで簡単な構成システムの 熱量測定法⁽³⁾に使用するチャンバーの体積と測定精度及び測 定時間の関係について実験により検証したので報告する。

2. システム構成

図1に提案する熱量測定法のブロック図を示す。ここでは、2 つの断熱材容器をチャンバーとして使用する。チャンバーA内 部に測定対象の電力変換器を設置し、駆動させる。チャンバー A内部の温度は、電力変換器内で発生する電力損失の熱によ り上昇する。そして、チャンバー表面からの放熱量と均衡し、温 度は飽和する。一方、チャンバーB内部の温度をPI制御器によ るフィードバック制御により制御する。ここで、PI制御器の目標 値は、チャンバーA内の温度に設定する。また、チャンバーB内 の温度は、ヒータを用いて制御する。チャンバーA内とチャンバ ーB内の温度が等しくなった時、電力変換器とヒータの熱量は 等しくなる。その結果、ヒータの消費電力を測定することで、電 力変換器の電力損失を求めることができる。よって、提案する熱 量測定法では、恒温槽を使用しないため、大幅な低コスト化が 望める。また、損失だけを測定しているため、高精度である。

3. 熱モデル

ここでは、チャンバー体積と測定時間の関係をチャンバー内 温度上昇の理論式を用いて議論する。まず、電力変換器をチャ ンバーA内に設置し、駆動させる。次に、チャンバーA内の空気 の温度を均一にするために、ファンにより循環させる。ここで、容

図1提案する熱量測定法のシステムブロック図 Fig.1. System configuration of proposed CPLM system.

器内の空気体積を $V[m^3]$, 空気密度を $\rho[kg/m^3]$, 空気の比熱を $C_p[J/kgK]$, チャンバーA 内の温度を $T_{in}[K]$ とする。 すると、 電力 変換器内部の発熱部から変換器表面までの伝熱量 $Q_{in}[W]$ は、 (1)式から求めることができる。

$$\rho C_p V \frac{dT_{in}}{dt} = Q_{in} - Q_R - Q_{cool} \tag{1}$$

 Q_{R} [W]は変換器表面から空気温度測定点までの伝熱量, Q_{cool} [W]はチャンバーを通過する伝熱量を示す。 $Q_{R} \ge Q_{cool}$ は温 度差と熱抵抗で表すことができ, (2)式となる。

$$\rho C_p V \frac{dT_{in}}{dt} = Q_{in} - \frac{T_R - T_{in}}{R_r} - \frac{T_{in} - T_{amb}}{R_{chamb}}$$

$$= Q_{in} - \frac{(Q_{in} \cdot R_r + T_{in}) - T_{amb}}{R}$$
(2)

ここで、 $T_R[K]$ は電力変換器の内部温度、 $R_r[K/W]$ は変換器表面から測定点までの空気の熱抵抗、 $T_{amb}[K]$ は周辺温度、 $R_{chamb}[K/W]$ はチャンバーAの熱抵抗、R[K/W]は全体の熱抵抗 (= $R_r + R_{chamb}$)を示している。

(2)式をラプラス変換すると、(3)式となる。

$$Q_{in}(r, R_{i}) = T_{in}(s) = T_{auto}$$

 $\rho C_p V(sT_{in}(s) - T_o) = \frac{2m}{s} \left(1 - \frac{1}{R}\right) - \frac{2m}{R} - \frac{2m}{sR}$ ここで, T_o はチャンバーA内の初期温度である。なお, 電力変換
器の熱量をステップ入力と仮定している。(3)式を T_{in} について解
き, 逆ラプラス変換を行うと、(4)式で表すことができる。

(3)

$$T_{in} = \left\{ Q_{in} R_{chamb} + T_{amb} \right\} \cdot \left\{ 1 - \exp\left(-\frac{1}{\rho C_p V R} t \right) \right\}$$

$$+ T_o \exp\left(-\frac{1}{\rho C_p V R} t \right)$$
(4)

(4)式より、 V が小さいとき、チャンバー内表面積が小さくなり、 放熱面積が減少することで R_{chamb}が増加する。これにより温度上 昇の時定数は長くなり、温度飽和までにかかる時間が長くなる ため、測定時間が長くなる。

4. 実験結果

〈4・1〉提案システムの評価

試作機を用いて、電力変換器の電力損失 Ploss を 5, 15, 25W とした時の測定精度を評価する。チャンバーB内に使用しているヒータと同等のものを変換器として模擬し、2つのヒータの電力損失が一致することを確認する。2つの断熱材チャンバーは同じ環境下に設置するため、周囲温度から受ける影響は等しいものとする。

図 2 に、電力変換器の損失に対する提案システムの測定誤 差率を示す。各消費電力での損失における最大誤差率は、 *P*_{loss}=25W時に4.8%, *P*_{loss}=15W時に1.3%, *P*_{loss}=5W時に8.0% であった。例えば、誤差率が8%の場合でも1kWの装置で、効 率99%前後のとき、全体の効率測定精度は92%となる。

〈4・2〉スイッチング(SW)電源の損失測定

実際に電力変換器をチャンバーA内に入れ、電力損失を測定する。測定対象には市販されている最高効率 67%の SW電源を使用する。低効率のためフルスケール誤差の影響が小さく、パワーメータでも高精度で損失を導出できる。そのため、パワーメータで測定した損失を真値とする。電子負荷を用いて SW電源の出力電力 Pout を設定し、各出力電力時の SW 電源の損失 P_{SW}を測定する。

図 3 に, P_{out} に対する P_{SW} と測定誤差率を示す。SW 電源の 電力損失に対する最大誤差率は, P_{SW} =10.7W 時に 6.1%, P_{SW} =13.7W 時に 4.4%, P_{SW} =15.0W 時に 2.7%, P_{SW} =16.8W 時 に 1.2%, P_{SW} =19.6W 時に 2.0%が確認された。

〈4・3〉容器体積と測定精度及び測定時間の関係

熱量を使用した損失測定法の測定精度及び測定時間は容 器の体積で左右させる。実験 $\langle 4\cdot 2 \rangle$ では、SW 電源の体積 V_{SW} =1075 cm^3 に対し、その 30 倍の体積 V_{chamb1} =31700 cm^3 を持 つチャンバーを用いた。本実験では、SW 電源の 2 倍の体積 V_{chamb2} =2280 cm^3 を持つチャンバーを用いて P_{SW} を測定する。 これにより、チャンバー体積が変化した時の電力損失測定 精度と測定時間を比較する。

図4に、Pout=1W時のチャンバー体積に対する測定精度及 び測定時間の結果を示す。V_{chmab1}に対し、V_{chamb2}の最大測定 誤差率は3.74%となった。しかし、V_{chamb1}の最大測定時間は 4380s、V_{chamb2}は6600sとなった。以上の結果から、体積が減少 することで測定精度は向上するが、測定時間が長くなった。これ は、Vが減少することでチャンバー内部の表面積が減少し、 R_{chamb}が増加する。(4)式より、R_{chamb}が増加することで温度上昇 の時定数が長くなる。これにより温度飽和までにかかる時間が 長くなるため、測定時間が長くなる。しかし、V を減少させること でチャンバー内の温度分布のばらつきが減少するため、測定精

度は向上した。

5. まとめ

本論文では,高効率変換器のための低コストの熱量測定法 を提案し,測定精度を実験により検証し,最大誤差率 8.0%を得 た。実際に電力変換器の損失を測定した結果,測定誤差率は 6.1%以内に収まることを確認した。また,電力変換器に対し2倍 の体積を持つチャンバーを用いることで,測定精度は向上した が,測定時間が長くなるという結果を確認した。

文 献

(1) D. Christen, et.al, IPEC2010, pp. 1438-1445 (2010)

(2) C. Xiao, et.al, IEEE tran. VOL. 43, NO. 3, pp. 657-664 (2007)

(3)濁川厚志,et.al,平成 24 年電気学会全国大会, pp.164-165, (2012)