パーミアンス法による極数を変化させた 埋込磁石同期電動機の損失計算 佐藤 大介*, 伊東 淳一(長岡技術科学大学)

Loss Calculation Using Permeance Method for Permanent Magnet Synchronous Motor of Changing Pole Number Daisuke Sato, Jun-ichi Itoh (Nagaoka University of Technology)

1. はじめに

近年,電動機駆動システムの高効率化を目的として,埋込永 久磁石同期電動機(IPMSM)の研究が盛んに行われている。電 動機のさらなる高効率化のためには,損失の解析が重要となる。 一般的に,電動機の特性は有限要素法(FEM)による解析がよく 用いられる⁽¹⁾。しかし,FEM による解析は長時間に及ぶことが多 く,電動機の構造が変わるたびに,解析モデルを作り変える必 要がある。著者らはこれまでに,パーミアンス法に基づいた簡易 的な磁気等価回路を提案し,その有用性を確認している⁽²⁾。し かし,極数やスロット数の変化に対応できるか未検証であった。

本論文では IPMSM の極数およびスロット数の違いによる電 動機損失の変化を提案磁気等価回路により計算し, FEM によ る損失解析結果と比較することにより,妥当性を評価する。

2. IPMSM の磁気等価回路

電動機では、ロータが回転し、ギャップの磁気抵抗が変化す るため、ステータと合わせて一つの回路で表現すると、ロータ位 置に応じて結線を変更する必要があり、等価回路が複雑化する。 そこで、ロータとステータを分けた等価回路で表現することで簡 素化する。

図1に集中巻 IPMSM(12 極18 スロット)の解析モデル,表1 にパラメータを示す。使用する電動機は、平行に着磁されたネ オジム磁石が埋め込まれている。また、極数とスロット数の関係 から周期角度は60度となる。

図2にロータの磁気等価回路を示す。ここでは、機械角30度の領域を対称とみなし、等価回路を1極の半分の領域で構成する。磁気抵抗 R は(1)式で与えられる。

 $R = \frac{l}{\mu S} \tag{1}$

 μ は透磁率, lは材料の長さ, Sは断面積である。ロータコアの磁気抵抗は永久磁石の磁気抵抗 R_m , ギャップの磁気抵抗 R_g に対して十分に小さいため, 無視する。また, 永久磁石による起磁力 F_m は(2)式で表される。

 H_e は磁石の保持力, I_m は磁石の長さである。なお,永久磁石と ロータ外径の間では磁気飽和が発生することから,飽和を考慮 した磁気抵抗 R_{sat} を用いて表現する。図2と上記の計算により, ギャップ間磁束を求めることができる。

Fig. 1. Concentrated winding IPMSM model

(12 poles and 18 slots).

TABLE I Parameters of concentrated winding IPMSM.

Core	35H300 / Nippon Steel
Magnet	NMX-41SH / Hitachi Steel
Coil turns per teeth	11
Outer diameter of stator	100 mm
Inner diameter of stator	66 mm
Outer diameter of rotor	64 mm
Inner diameter of rotor	25 mm
Air gap length	1 mm
Iron stack length	50 mm

Fig. 2. Magnetic equivalent circuit of rotor.

図3にステータの等価回路を示す。ギャップ間磁束を発生させる要素として仮想的に交流の起磁力源Fgを置く。これにより、回転するロータの影響を考慮することができる。また、磁石の配置からFgは台形波と仮定する。図2の等価回路から導出した磁束を発生させる起磁力を最大値として、磁石の幅とティース先端部の幅の比率から波形を決定する。起磁力の位相はティースの位置から決定する。また、コイルに流れる交流電流Imsin(*at*+*θ*)による起磁力F_iは(3)式で与えられる。

$$F_i = NI_m \sin(\omega t + \theta)$$
(3)

N はティースごとの巻線ターン数である。なお、ティースとヨークの磁気抵抗 R₁, R₂ は磁気飽和の影響を考慮する。以上により、 ティースとヨークの磁束密度の時間変化を求めることができ、コ アの鉄損曲線をもとにすることで、ステータの鉄損計算が可能と なる。

3. 極数・スロット数変化時の IPMSM の損失計算

前節において提案した磁気等価回路は、極数により周期 角度が変化した場合においても、回路を再構成することな く、起磁力周波数を変化させるだけで、同様に磁束密度を 計算できる。本節では極数とスロット数の比を一定とした うえで、極数を変化させた場合の IPMSM の損失を計算する。 なお、比較のため 2 次元 FEM ソフト(JMAG Designer / JSOL) により、鉄損を解析する。

図4に8極12スロット,16極24スロットの解析モデル を示す。周期角度はそれぞれ90度,45度である。図1の IPMSMを含め、ロータおよびステータの外径、ギャップ長 さ、積厚、巻線ターン数、磁石の総体積および径方向長さ は同一としている。また、スロット数の変化に伴い、スロ ット面積も変化することから、占積率を一定として、巻線 断面積すなわち巻線抵抗を変化させる。なお、速度は3600 r/minとし、起磁力周波数を変化させる。出力トルクに関し ては、FEMにおいては3.9 Nmで一定となるように電流振 幅を調整し、提案法ではギャップ間磁束の大きさから、電 流振幅を決定する。

図5に極数およびスロット数を変化させた IPMSM の損失 計算結果を示す。損失の大きさは電動機体積で基準化して いる。すべてのモデルにおいて,提案法と FEM による計算 結果の誤差は 10%未満であり,損失変化の傾向が一致して いる。また,12極 18 スロット IPMSM の損失が最小である ことから,今回の条件では12極とすることで高効率化が可 能となる。

極数およびスロット数を少なくした場合, ティース幅を 大きくできるため, 磁束密度が低下し, 鉄損は減少する。 また, スロット断面積が増加するため, 巻線抵抗を小さく できる。しかし, 同一トルク出力のため, 電流を大きくす る必要があり, 銅損は増加する。対して, 極数とスロット 数を多くした場合, 電流を小さくできるため, 銅損は減少 するが, ステータコアで磁気飽和が起こりやすくなり, 鉄 損は増加する。

以上, IPMSM の極数を変化させた場合の損失計算を行い, 設計における提案法の有用性が確認できる。

4. まとめ

本論文では,提案磁気等価回路により,極数を変化させた IPMSM の損失を計算し,FEM による解析結果と比較した。その結果,検討したすべてのモデルにおいて,損失変

Fig. 3 Magnetic equivalent circuit of stator.

Fig. 4 IPMSM models of changing pole number.

number based on the constant volume.

化の傾向が一致し, 誤差 10%未満であることを確認した。 今後はパーミアンス法を用いた磁石渦電流損の計算を行う 予定である。

文 献

(1) 山崎, 磯田: 電学論 D, Vol. 128, No. 5, pp.678-684 (2008).

(2) 佐藤, 伊東: SPC-13-157, VT-13-040, HCA-13-062 (2013).