巻線切替三相同期発電機の高効率高パワー密度 化に向けたバックヨーク設計に関する基礎検討

谷向一馬*,佐藤大介,伊東淳一(長岡技術科学大学)

An Basic Study of Back Yoke to High Power Density and High Efficiency Winding Changeover Three-Phase Synchronous Generator

Kazuma Tanimukai*, Daisuke Sato, Jun-ichi Itoh (Nagaoka University of Technology)

1. はじめに

近年,災害時の電源用途として小型のエンジン発電機が 注目されている⁽¹⁾。本用途に使用される発電機は高効率化の 観点から永久磁石同期発電機の適用が望ましい⁽²⁾。しかしな がら,永久磁石同期発電機の高効率運転領域は設計の時点 で決定される動作領域のみである。そのため,負荷に応じ てエンジンの回転数を変化させるエンジン発電機では,高 効率で運転可能な動作領域を使用できず,効率が低下する 問題がある⁽³⁾。この解決策として,巻線切替方式が注目され ている⁽⁴⁾。巻線切替発電機は動作領域に応じて巻線を切り替 えるため,より広い動作領域で高効率に運転できる。しか しながら,巻線切替発電機の具体的な設計に関する報告は 少ない。そこで本論文では,巻線切替発電機の設計指針の 明確化に向けた基礎検討として2系統の巻線を有する巻線 切替発電機の電磁界解析を行い,バックヨークの厚さにつ いて検討する。

2. 発電機構造について

図1に電磁界解析の対象となる発電機システム,表1に 発電機の仕様を示す。図1より,発電機は2系統の巻線を 有する。これは1系統に流れる電流を半分することで,銅 損を低減するためである。1系,2系の巻線にはそれぞれ常 時通電するメイン巻線 L_{lmain} , L_{2main} と切り離しが可能なサ ブ巻線 L_{lsub} , L_{2sub} の2種類があり,計4つの巻線により構 成される。これら4つの巻線は1つのステータ上に構成さ れるため,それぞれが磁気結合している。ここで,4つの巻 線にはそれぞれダイオードクランプ回路,RCスナバ,切り 替え用のFET が接続される。このFETを制御することで通 電する巻線を切り替える。また,スナバは巻線の切り替え 時に発生するサージ電圧を抑制する。

図2 に発電機の解析モデルを示す。電磁界解析は JMAG Designer (JSOL)を使用した二次元有限要素法により行う。 解析モデルは6極、36 スロットのため、周期性を考慮して 6分の1のモデルとする。図2より、発電機はロータ表面 に永久磁石を貼り付けた表面磁石形構造になっており、各 巻線は径方向に1層ごとに積み重ねられた4層構造になっ ている。また、1系巻線は2系巻線に対して1スロット分

Fig.1. Circuit of the generator

Table1. Parameters of the generator

Rated Power	4.5kW
Rated Speed	10,000rpm
Pole number	6

Fig.2. 1/6 model of the generator

の10度だけずらして巻かれている。ただし、1系2系の巻

線はそれぞれ分布巻であり、メイン巻線 18 ターン、サブ 巻線 15 ターンである。

3. 解析モデルと試作機の誘起電圧に関する比較

図3に試作機と解析モデルの無負荷,4000rpm 時におけ る1系巻線と2系巻線のU相誘起電圧を示す。図3より解 析結果と試作機で誘起電圧の形状は一致していることが確 認できる。サブ巻線の接続の有無により誘起電圧の大きさ は異なるものの、サブ巻線接続時の誘起電圧波形はメイン 巻線のみの波形と同様となる。また、誘起電圧の大きさは メイン巻線のみの場合2.4%の誤差で一致している。サブ巻 線接続時は同じ回転数のメイン巻線のみの場合と比較して 1.83倍の電圧を得られる。無負荷時誘起電圧は発電機構造、 磁石特性および巻数のみによって決定される。従って、解 析モデルが妥当であることが確認できる。

4. 高効率化に向けたバックヨーク厚さに関する検討

図4にバックヨークの厚さを3.50 mmから14.0 mmまで のパワー密度および発電機の電気損失によるパレートフロ ントカーブを示す。本パレートフロントカーブはグラフ右 下端ほど、より良い解となる。解析条件として、メイン巻 線のみの場合 8000 rpm, サブ巻線を接続した場合は 1000 rpm とする。また、電気損失は損失最大となるバックヨー ク7mmのメイン巻線時の損失で基準化される。図4(a)より, バックヨークが 7 mm 以下の範囲については, 7 mm 以上の 範囲よりもパワー密度もしは効率が低くなることがわかる。 よって、バックヨークの厚さは7 mm 以上で設計すること が望ましい。この原因は磁気飽和現象によるものである。 バックヨークの厚さが 7 mm よりも薄い場合,磁気飽和に より誘起電圧が減少し出力電力が減少する。図4より発電 機損失についてはサブ巻線接続時、メイン巻線のみの場合 よりも損失が小さくなっていることがわかる。これはサブ 巻線接続時,メイン巻線のみの場合と比較して軽負荷とな っているためである。以上より、巻線切替の前後でバック ヨークの厚さに対するパレートフロントカーブは同様の傾 向が得られ、最も高効率または高パワー密度となるバック ヨークの厚さが一意に決定されることがわかった。結論と して、本巻線切替発電機においてはバックヨークの厚さが7 mm のときにもっともパワー密度が高く、パワー密度と損 失のバランスがとれる見込みが得られた。

4. まとめ

本論文では、巻線切替発電機の高効率化に向け、電磁界 解析を使用した二次元有限要素法の解析によりバックヨー クの厚さについて検討を行った。結論として、今回行った 解析条件からは、高パワー密度化及び低損失化の両立の観 点から、バックヨーク厚は7mmが望ましいことを示した。 また、このときパワー密度は198 W/dm³と最大になる。今 後はさらなる高効率化を実現できる発電機構造を検討する。

(b) Main and sub winding at 1000rpm

Fig.4. Pareto front curve of thickness of back yoke

(2) 木村守 他, 電学論 D, Vol.126, No.3, pp.255-260 (2006)

```
(3) 金井潤一 他, 特開 2013-164023(2013)
```

(4) Mahesh M. Swamy 他, IEEE Transactions IAS, Vol.42, No.3, pp.742-752 (2006)

文 献

⁽¹⁾ 柏木航平, 磯部高範, 嶋田隆一, 電学論 D, Vol.132, No.5, pp.542-548 (2012)