電流不連続モードで動作する昇圧形アクティブバッファを用いた 単相系統連系インバータの実機検証

学生員 櫻庭 友和 学生員 レ ホアイ ナム 上級会員 伊東 淳一 (長岡技術科学大学)

Experimental Verification of DC to Single-phase AC grid-connected inverter

with Boost Type Active Buffer Circuit Operated in Discontinuous Current Mode

Tomokazu Sakuraba, Student member, Hoai Nam Le, Student member,

Jun-ichi Itoh, Senior member (Nagaoka University of Technology)

A circuit configuration for a single-phase inverter with a power decoupling capability operated in discontinuous current mode (DCM) is proposed in this paper. The inverter connected to a single-phase grid requires the power decoupling capability to compensate a power ripple with twice the grid frequency. Bulky capacitors are used as a DC-link capacitor in a conventional system. On the other hand, the proposed active buffer, which operates without an additional inductor for a buffer circuit, uses ceramic capacitors instead of an electrolysis capacitor. In this paper, a control method for the power decoupling circuit operated in DCM is introduced. In addition, the validity of the proposed circuit is experimentally demonstrated by a 600-W prototype. As an experimental result, the input current ripple at twice the grid frequency is suppressed from 80.3% to 2.0%.

キーワード: PV インバータ,単相電力脈動補償,電流不連続モード **Keywords**: PV inverter, Power pulsation compensation, Discontinuous current mode

1. はじめに

近年,地球温暖化を背景に太陽光発電(以下, PV)の導入が 進められている。PV を単相系統に連系する場合,昇圧チョ ッパと系統連系インバータで構成されるパワーコンディシ ョナ(以下, PCS)が一般的に用いられる。ここで, PV の発電 電力は直流であるのに対し,単相系統は系統周波数の2倍 周波数で瞬時電力が脈動する。したがって,直流電力を一定 にするためには PCS 内のキャパシタでこの瞬時電力脈動を 補償する必要がある。従来の PCS では,直流部に大容量の 電解コンデンサが必要となり,変換器の短寿命化を招く。

そこで、電解コンデンサの代わりに小容量のエネルギー バッファで単相電力脈動を補償するアクティブパワーデカ ップリング方式が検討されている⁽¹⁻³⁾。本方式は、フィルム コンデンサやセラミックコンデンサを用いて瞬時電力脈動 を補償可能なため、電力変換器の長寿命化が期待できる。し かしながら、アクティブパワーデカップリング方式には、コ ンデンサを充放電するための追加回路が必要となる。特に バッファキャパシタの電圧を制御するための追加のインダ クタは電力変換器の小型化や高効率化の妨げとなる。さら に、連系インバータに並列に降圧チョッパを接続して電力 脈動を補償する方式では、バッファキャパシタの電圧が DC リンク電圧によって制限されるため、バッファキャパシタ の小容量化に限界がある⁽⁴⁻⁵⁾。

本論文では、上記の問題を解決するために、追加の磁気部 品なしでバッファキャパシタを小容量化可能なアクティブ パワーデカップリング回路を提案する。昇圧チョッパの電 流不連続モードを用いてバッファキャパシタ電圧を昇圧す る DCM アクティブバッファ回路を提案する。この回路では キャパシタ電圧を電源電圧以上に昇圧できることから,キ ャパシタの小容量化に有利である。実機検証にて,DCM ア クティブバッファ回路の有用性を確認したので報告する。

2. DCM アクティブバッファ回路

〈2・1〉 従来回路の構成

図 1 に従来の昇圧形アクティブパワーデカップリングを 適用した PCS の回路構成を示す。本回路はインバータ直流 部に昇圧チョッパとバッファキャパシタ Cbuf からなるパワ ーデカップリング回路を接続する。バッファキャパシタの 電圧をアクティブに変動させることにより、小容量のキャ パシタで電力脈動を補償することができる。これにより、フ ィルムコンデンサやセラミックコンデンサを適用すること が可能となるため、長寿命化が期待できる。しかし、本回路 ではキャパシタの電圧を制御するための追加の昇圧リアク トル Lbuf が必要なため、システムが大型化する。

〈2·2〉 DCM アクティブバッファ回路の構成

図2にDCMアクティブバッファ回路を示す。本回路は, 昇圧チョッパのリアクトルを用いてDCリンク電圧とバッ ファキャパシタ電圧の制御を行うため,追加のインダクタ なしにパワーデカップリングが可能となる。

DCM アクティブバッファ回路では、昇圧チョッパが電流 連続モード(CCM)で動作した場合、昇圧リアクトルに流れる 電流が一方向であるため、バッファキャパシタが電荷を放 電できない。そこで昇圧チョッパの電流不連続モード(DCM) を用いて、昇圧リアクトルの電流を正負に制御することで、 バッファキャパシタの充放電期間を設ける。さらに DCM の ゼロ電流期間を利用することで、一つの昇圧リアクトルで DC リンク電圧とバッファキャパシタ電圧を制御する。

3. 制御方式

〈3・1〉 単相電力脈動補償の原理

図3に入力電力 pin と出力瞬時電力 pout, アクティブバッファの補償電力 pbufの関係を示す。出力瞬時電力は、出力電圧と出力電流が正弦波で負荷力率1とすると(1)式となる。

ここで, *V_mと I_m*はそれぞれ単相系統の電圧最大値と電流最 大値, *aout* は系統の角周波数である。(1)式より,単相瞬時電 力は系統周波数の 2 倍の周波数で脈動することがわかる。 入力電力 *p_{in}を一定にするためには*,(1)式の第2項の脈動成 分をアクティブキャパシタで補償する必要がある。そこで, アクティブバッファの瞬時電力 *p_{buf}*を(2)式で制御する。

$$p_{buf} = \frac{V_m I_m}{2} \cos 2\omega_{out} t \qquad (2).$$

(2)式において、アクティブバッファ回路はエネルギーを充 放電するのみで定常的に電力を出力しない。したがって、入 力直流電力は、アクティブバッファ回路で電力脈動を補償 した結果、(1)式の第1項と一致し、一定値となる。

〈3·2〉 DCM アクティブバッファ回路の動作原理

図4にDCMアクティブバッファ回路の動作モード,図5 にDCMの昇圧リアクトルの電流波形を示す。本回路は,4 つの動作モードを達成するようにS1~S4をスイッチングす る。まず,ModelとMode2により通常の昇圧チョッパ動作 を行う。次にMode3とMode4によりパワーデカップリング 動作を行う。ここで,両電圧制御の干渉を避けるために Mode2とMode3の間で電流ゼロ期間を設ける。バッファキ ャパシタ電圧がDCリンク電圧よりも低い場合,S4の還流 ダイオードが導通し、バッファキャパシタとDCリンクのキ ャパシタが短絡する。したがって、バッファキャパシタの電 EはDCリンク電圧よりも常に高く制御する必要がある。

バッファキャパシタは、Mode3 から Mode4 の順でスイッ チングすることで昇圧リアクトルの電流を正方向に流し、 電荷を充電する。逆に、Mode4 から Mode3 の順でスイッチ ングし、昇圧リアクトルに負方向の電流を流すことでバッ ファキャパシタの電荷を放電する。以上より、本回路は追加 の磁気部品なしで単相電力脈動補償が可能である。

〈3・3〉 制御ブロック

図 6 に DCM アクティブバッファ回路の制御ブロックを 示す。提案制御は、昇圧リアクトル電流制御をマイナールー プとし、DC リンクキャパシタ電圧制御とバッファキャパシ タ電圧制御で構成される。筆者らは、DCM における昇圧チ ョッパのリアクトル電流平均値をサンプリングと計算によ り求める手法を提案し、電流制御系の目標値応答が CCM に おける電流制御系と一致することを確認している⁽⁶⁾。この手 法を用いて本制御系でも、昇圧リアクトルの電流制御を CCM の電流制御系と同様に設計できる。1 スイッチング周 期内に電流ゼロ期間を設けることで、DC リンクキャパシタ

Fig. 1. Conventional boost type active power decoupling circuit.

Fig. 3. Single-phase power pulsation compensation.

電圧制御とバッファキャパシタ電圧制御に必要な電流をそ れぞれ,一つの昇圧リアクトルで制御する。以下に各制御の 詳細を示す。

〈3·3·1〉 昇圧リアクトル電流制御

図 5 における昇圧リアクトルの平均電流 *iL_ave* は, DC リ ンク電圧を制御する電流平均値 *iL_ave_dc* とバッファ電圧を制 御する電流平均値 *iL_ave_buf* の和となる。すなわち,

 $i_{L_ave} = i_{L_ave_dc} + i_{L_ave_buf}$(3). ここで各動作モードに対するデューティを $d_1 \sim d_4$ と定義する。パワーデカップリング制御を適用しない場合,(1)式の出力電力と入力電力は等しいことから,昇圧チョッパにおける DC リンクキャパシタ電圧を制御する電流平均値は,

$$i_{L_ave_dc} = \frac{i_{peak}}{2} (d_1 + d_2) = \frac{P}{V_{in}} [1 - \cos(2\omega_{out}t)] \dots (4),$$

となる。ここで、Pは定格電力である。したがって、パワー デカップリング制御を適用しない場合、入力平均電流は系 統周波数の2倍周波数で脈動する。そこで、入力電流の平均 を一定値とするために、バッファ電圧を系統周波数の2倍 周波数で振動させ、脈動を吸収する。(3)式と(4)式の関係か ら、バッファキャパシタ電圧を制御する電流平均値を(5)式 で制御する。この結果、(3)式のiL_aveを一定値に制御できる。

$$i_{L_ave_buf} = \frac{i'_{peak}}{2} (d_3 + d_4) = \frac{P}{V_{in}} \cos(2\omega_{out}t) \dots (5).$$

〈3·3·2〉 DC リンクキャパシタ電圧制御

図6において,DCリンクキャパシタ電圧指令値 V_{dc}*は系 統電圧最大値よりも常に高く設定する。また,DCリンク電 圧の変動はインバータ出力電流 THD を悪化させるため,常 に一定値の直流となるように制御する。そこで,電圧制御の PI制御器出力部にインバータ入力電流 i_{inv}をフィードフォワ ードする。これにより昇圧チョッパから DC リンクキャパシ タに供給する電流とインバータ入力電流が等しくなるた め,DC リンクキャパシタの電圧を一定に制御できる。

〈3・3・3〉 バッファキャパシタ電圧制御

バッファキャパシタ電圧は、単相電力脈動を補償するために系統周波数の2倍周波数で振動させる。ここで、電圧指令値に対して周波数成分を与えた場合、電圧制御の応答を上げる必要があり、応答設計が困難になる。そこで、電圧指令値はバッファキャパシタ電圧の平均値のみを制御する。 そして、電流指令値に充放電電流指令*ibuf*を加算することで、バッファキャパシタの充放電電力を制御する。充放電電流指令値*i^{*}buf*は、昇圧リアクトル電流が(5)式となるように、

で与える。これにより、電圧制御系は直流成分に対してのみ PI 制御器で制御すればよいため、制御応答を十分遅く設計 できる。最後に、生成したデューティ *d*₁~*d*₄をのこぎり波キ ャリアと比較して、ゲート信号 S1~S4を作成する。

4. DCM アクティブバッファ回路の設計

〈4・1〉 昇圧リアクトル設計

図 5 において,各動作モードのデューティの和が1より 大きくなる場合,2つの電圧制御が干渉する。そこで,

 $d_1 + d_2 + d_3 + d_4 \leq 1$(7), の条件を満たす必要がある。(7)式の和が1となった場合, DCM アクティブバッファ回路は臨界モードで動作する。臨 界モードでは入力電流リプルが最小となり、半導体素子の 導通損失が最小となるため、昇圧リアクトルを定格電力時 に臨界モードで動作するように設計する。臨界モードとな るインダクタンス値は、(4)式と(5)式、昇圧リアクトルの電 圧と電流の傾きの関係から(8)式となる。

$$L_{boost} = \frac{V_{in}^{2}(\alpha_{di} - 1)}{4f_{sw}P\alpha_{di}\left(1 + \sqrt{\frac{\alpha_{bd}}{2}\frac{\alpha_{di} - 1}{\alpha_{di}\alpha_{bd} - 1}}\right)^{2}} \dots (8).$$

ここで, *abd*:DC リンク電圧に対するバッファキャパシタ平 均電圧の昇圧比, *adi*:入力電圧に対する DC リンク電圧の昇 圧比である。

〈4.2〉 バッファキャパシタ設計

本回路では、1スイッチング周期内で DC リンク電圧とバ ッファキャパシタ電圧を制御するため、両電圧の昇圧可能 な範囲が制限される。(7)式より、DC リンク電圧とバッファ キャパシタの条件式は(9)式となる。

$$V_{buf_ave} > \frac{\beta}{\beta - 1} \frac{1}{\alpha_{di}} V_{dc} \qquad (9).$$

Fig. 6. Control block for DC link voltage and buffer voltage.

であり, azz は定格負荷時の昇圧チョッパの入力インピーダ ンスに対する昇圧リアクトルのインピーダンスの比であ る。したがって,定格電力と(9)式のバッファキャパシタの平 均電圧より, バッファキャパシタ容量は,

ここで、*Av*cはバッファキャパシタの変動電圧幅である。

5. 実機検証

DCM アクティブバッファ回路の有用性を確認するため に、実機による動作検証を行った。表1に実機の回路パラメ ータを示す。昇圧リアクトルは、臨界モード時のインダクタ ンスに対して30%程度のマージンで設計した。本論文では、 実験の簡単化のために系統連系は行わず、RL 負荷による実 験を行った。また、制御はオープンループとした。

図 7 に DCM アクティブバッファ回路による動作波形を 示す。図 7(a)より,単相電力脈動補償制御を行わない場合, フィルタ通過後の入力電流はインバータ出力周波数の 2 倍 周波数で脈動していることがわかる。一方,図 7(b)より,提 案制御を用いることで入力電流の脈動が低減できているこ とを確認した。また,バッファキャパシタの放電により昇圧 リアクトル電流には負の期間が生じることがわかる。この ように,単相電力脈動に対して,バッファキャパシタが充放 電を行うことでリアクトル電流の脈動が低減されているこ とを確認した。

図 8 に 600 W 出力時における昇圧リアクトル電流の高調 波解析結果を示す。ここで,直流電流成分を 100%として各 周波数成分を基準化した。電力脈動補償制御を適用するこ とにより,昇圧リアクトル電流の 2 次成分(100 Hz)を 80.3% から 2.0%まで低減可能であることが確認した。ここで,4 次 以上の高調波成分が増加しているが,直流成分に対して十 分小さい。以上より,DCM アクティブバッファ回路におけ る単相電力脈動の有用性を確認した。

6. まとめ

本論文では、DCM で動作する昇圧形アクティブパワーデ カップリング回路の制御法を提案し、実機による動作検証 を行った。DCM アクティブバッファ回路では、昇圧チョッ パの昇圧リアクトルを用いてバッファキャパシタの電圧制 御を行うため、追加の磁気部品を必要としない。実験結果よ り、昇圧リアクトル電流に生じる系統周波数の2 倍周波数 のリプルを 80.3%から 2.0%まで低減可能であることを確認 した。今後は、提案制御法を適用したパワーデカップリング 回路の効率評価を行う予定である。

文 献

- H. Hu, S. Harb, N. Kutkut, I. Batarseh, Z. J. Shen : "Power Decoupling Techniques for Micro-inverters in PV Systems — a Review," Energy Conversion Congress and Exposition 2010, pp.3235-3240, pp. 12-16 (2010)
- (2) S. Qin, Y. Lei, C. Barth, W. Liu, R. C. N. Pilawa-Podgurski : "A High-Efficiency High Energy Density Buffer Architecture for Power Pulsation Decoupling in Grid-Interfaced Converters", IEEE ECCE, pp.149-157 (2015)
- (3) 外山佳祐,清水敏久:"パワーデカップリング機能を持つ高効率単相 系統連系インバータとその制御法",電気学会論文誌 D, Vol. 135, No. 2, pp. 147-154 (2015)
- (4) Yi Tang, Frede Blaabjerg, Poh Chiang Loh, Chi Jin, Peng Wang : "Decoupling of Fluctuating Power in Single-Phase Systems Through a Symmetrical Half-Bridge Circuit", IEEE Trans., Vol. 30, No. 4, pp. 1855-1865 (2015)

Table 1. Circuit parameters of the prototype.

Rated power	Р	600 W
Input voltage	V_{in}	150 V
DC-link voltage	v_{dc}	300 V
Buffer average voltage	v_{buf_ave}	400 V
Switching frequency	f_{sw}	20 kHz
Capacitance	C_{buf}	55.6 μF
	C_{dc}	57.2 μF
Inductance	Lboost	56.6 μ H (Critical condition:87.9 μ H)
	L _{gri}	5.3 mH (%Z=2.5%)
Switching device	$S_1 \sim S_4$	Rohm, SCH2080KE
	$S_{up} \sim S_{wn}$	Fuji electric, FGW30N60VD

(b) With power decoupling control.Fig. 7. Experimental waveforms.(Cutoff frequency of low pass filter:2kHz)

Fig. 8. Harmonics components on the boost inductor current.

- (5) 鈴木進吾,和田圭二,清水敏久:"パワーデカップリング機能を持つ 電圧形単相系統連系インバータ",平成 22 年電気学会産業応用部門 大会, No. 1-4, pp. 185-188 (2010)
- (6) レホアナム、佐藤大介、折川幸司、伊東淳一:「電流不連続モードを有 する双方向 DC/DC コンバータの電流フィードバック制御」、平成 27 年電気学会全国大会、No. 4-083, pp. 141-142 (2015)