Power Factor Correction Focusing on Magnetic Coupling of Parallel-connected Wires for Inductive Power Transfer System

Keita Furukawa, Keisuke Kusaka, Jun-ichi Itoh
Nagaoka University of Technology
Department of Electrical, Electronics and Information
Nagaoka, Niigata, Japan
archer_FK@stn.nagaokaut.ac.jp, kusaka@vos.nagaokaut.ac.jp, -itoh@vos.nagaokaut.ac.jp

Abstract—This paper proposes a power factor correction method of a non-resonant IPT system using a four-winding transformer. The proposed technique is applied to the IPT system with a dual active bridge converter to reduce conduction loss and winding loss. When two pairs of the primary-side and the secondary-side wires are connected in parallel, the low coupling coefficient between the wires driven by in-phase voltage corrects the power factor from the viewpoint of the power supply due to the improvement of an equivalent magnetic coupling. The effect of the power factor correction is assessed by experiments with two four-winding transformers, coupling coefficient of which is different from each other. As experimental results, it is confirmed that a maximum efficiency with the lower coupling coefficient between the parallel connected wires is improved by 3.0% in comparison with the system, which has the high coupling coefficient.

Keywords—wireless power transfer; multi-winding transformer; non-resonant inductive power transfer; dual active bridge

I. INTRODUCTION

In recent years, inductive power transfer (IPT) systems have attracted many researchers as a safety and convenient battery chargers for electrical vehicles (EVs) [1-6]. The IPT systems are able to achieve power transmission without electrical contacts. An increase in a transmission distance of transmission coils causes a reduction of mutual inductance, which results in a low power factor from the view of power supply because the reactive current increases [7]. Large reactive current is one of the factors reducing system efficiency.

In order to correct the power factor, the IPT systems using resonance phenomena have been proposed [1-6][8]. Resonant capacitors are connected in series or parallel to the transmission coils in order to compensate the reactance of the coils by LC resonance [1-6]. Therefore, the resonant IPT systems can achieve unity power factor at the resonance frequency because reactive current is canceled. Considering with actual high-power applications, however, position misalignment of coils or tolerance of resonant component degrades the transmission efficiency because the resonant frequency does not match an operation frequency [1], [6]. In particular, capacitive load increases switching loss of a primary-side inverter because ZVS (zero voltage switching) and ZCS (zero current switching) are not achieved [8].

In order to solve the above-mentioned problems of the resonant IPT system, the non-resonant IPT system utilizing a dual active bridge (DAB) converter has been proposed [9]. In the system, the transmission power is determined by a phase difference between the inverter output voltages of the primary side and the secondary side. This method achieves the power factor correction without resonant capacitors [8]. Besides, ZVS is achieved at all switching devices despite load conditions [9][10]. However, high reactive current still leads to the increase in a conduction loss of the switching devices and the winding loss of the transmission coils due to low magnetic coupling [10]. Thus the non-resonant IPT system has to achieve the reduction of the conduction loss and the winding loss when the system is employed to lower-magnetic coupling applications.

This paper proposes a power-factor-correction method for non-resonant IPT systems with a multi-winding transformer as one of the solution to overcome issues of the high conduction loss and winding loss. Two or more wires are connected to the primary core and the secondary core in parallel. From the equivalent circuit of the systems, the weak coupling coefficient \(k_c \) between the parallel-connected wires decreases equivalent leakage inductance. Thus a low-\(k_c \) transformer reduces the reactive current at the same load.

This paper is organized as follows; first, the theoretical expressions of output power and the power factor is derived. Then, the comparative testing results are showed with a 1.1-kW prototype using two multi-winding transformers which have different coupling \(k_c \); the conventional high-\(k_c \) transformer and the proposed low-\(k_c \) transformer. As a result, power-factor correction and reduction of input current are achieved in the proposed transformer. Moreover, the maximum system
efficiency of the prototype circuit is improved from 87.3% to 90.3% with the proposed transformer.

II. CONVENTIONAL METHODS OF IPT SYSTEMS

A. Conventional Resonant Inductive Power Transfer System

Fig. 1 shows the equivalent circuit of the resonant IPT systems focusing on the AC voltage of fundamental frequency. Resonant capacitors are connected to input and output of the transmission coils in series (S/S type). The input current \(I_{in} \) and the output current \(I_{out} \) of the system are expressed by (1) and (2) [8].

\[
I_{in} = r + j \left(\frac{\omega L}{\omega C} - 1 \right) \frac{V_p}{\sqrt{1 + (\frac{\omega L}{\omega C})^2}}
\]

\[
I_{out} = -\frac{j}{\omega L} \left(\frac{\omega L}{\omega C} - 1 \right) \frac{V_p}{\sqrt{1 + (\frac{\omega L}{\omega C})^2}}
\]

where \(V_p \) is the input voltage, \(L \) is the self-inductance of the transmission coils, \(r \) is the equivalent series resistance, \(C \) is the capacitance of the resonant capacitors, \(R \) is the load resistance and \(k \) is the coupling coefficient between the transmission coils.

The value \(C \) is designed to cancel the reactance of the self-inductance of the transmission coils. The resonance angular frequency \(\omega_0 \) is decided by (3) [8].

\[
\omega_0 = \frac{1}{\sqrt{LC}}
\]

The operation frequency \(f_{vo} \) of the inverter is generally designed same or a little larger than the resonance frequency \(\omega_0 / (2\pi) \) to reduce switching loss with zero-voltage-switching (ZVS) or zero-current-switching (ZCS). However, the error of \(\omega_0 \) due to position misalignment of coils or tolerance of the resonant components causes the degradation of the system efficiency and the output power. In particular, the inverters operate neither ZCS nor ZVS with a capacitive load. In addition, low power factor is caused by the increased reactance.

B. Non-resonant Inductive Power Transfer System Applied to Dual Active Bridge

Fig. 2 shows the non-resonant IPT system utilizing the DAB converter [9]. The single-phase full-bridge inverters are employed at both the primary side and the secondary side of the transmission coils.

Fig. 3 shows the operation principle of the non-resonant IPT system. Not only the primary inverter but also the secondary inverter supply AC voltage \(v_p \) and \(v_s \) to the transmission coils. Note that the inverters output two-level voltage and the frequency of the output voltage is same. Transmission power \(P \) is presented by

\[
P = \frac{kV_pV_{out}}{2\pi f_{sw} L (1-k)} \left(\frac{1-\delta}{\pi} \right)
\]

where \(V_{in} \) and \(V_{out} \) are the input and output DC voltage, \(L \) is the self-inductance of the transmission coils, and \(\delta \) is the lagging phase difference between \(v_p \) and \(v_s \).

The transmission power of the non-resonant IPT system is controlled by adjusting the lagging phase difference [9]. If \(\delta \) is positive, the power flow is primary side to secondary side. On the other hand, when \(\delta \) is negative, the power flow is secondary side to primary side. Thus the non-resonant IPT system achieves not only the control of the transmission power, but also the bi-directional operation without additional compensation circuits [9].
The total power factor from the viewpoint of the inverter is always lower than 1, because the excitation current for the small mutual inductance regardless of \(\delta \) [9] [10]. In particular, when the coupling coefficient \(k \) is significantly low \((k = 0.01–0.2)\), the power factor is greatly decreased because of the large excitation current. The increase in the excitation current causes large conduction loss and copper loss. Therefore, it is important to keep the coupling coefficient as high as possible. In the next section, the proposed power-factor-correction method with a four-winding transformer is described.

III. PROPOSED CIRCUIT CONFIGURATION

A. System Configuration

Fig. 4 shows the system configuration of the proposed system. The difference of the proposed system compared with the conventional non-resonant IPT system (Fig. 2) is that the four-winding transformer is introduced as the transmission coils. Two primary side wires are wound onto one shared primary core. The same procedure is carried out at the secondary side. Through this winding structure, the windings on each side are magnetically coupled with the coupling coefficient \(k_c \).

Considering the reduction of power loss in the converter, the multiple single-phase full-bridge inverters should be connected to each winding. Besides, each of the primary-side inverters and the secondary-side inverters is driven in phase to avoid cross currents. However, only one DAB converter drives the four-winding transformer in this experiment for the simplicity. A parallel connection of the full-bridge inverter is more effective to decrease the conduction loss of MOSFETs because the current is divided into each converter. In next section, a method of increasing an equivalent magnetic coupling between the primary side and the secondary side is discussed.

B. Analysis of Four-winding Transformers

Fig. 5 shows the equivalent circuit of the four-winding transformer [11]. Terminal voltages of windings \(m \) \((m = 1, 2, 3, 4)\) contain not only an induced electromotive force from the current flowing through the winding \(m \), but also the sum of the induced voltages from the currents flowing in the other windings. Consequently, the magnetic coupling among four windings has to be considered. The relationship between the input voltage \(v_m \) and the input current \(i_m \) of the winding \(m \) is expressed by using a four-order inductance matrix \(L_{\text{trans}} \) as shown in

\[
\begin{align*}
\frac{\text{d}i_1}{\text{d}t} &= L_{\text{trans}}^{-1} \begin{bmatrix} 1 & 1 & 1 & 1 \\
Le_{11} & Le_{12} & Le_{13} & Le_{14} \\
1 & 1 & 1 & 1 \\
Le_{21} & Le_{22} & Le_{23} & Le_{24} \\
1 & 1 & 1 & 1 \\
Le_{31} & Le_{32} & Le_{33} & Le_{34} \\
1 & 1 & 1 & 1 \\
Le_{41} & Le_{42} & Le_{43} & Le_{44} \\
\end{bmatrix} \begin{bmatrix} v_1 \\
v_2 \\
v_3 \\
v_4 \\
\end{bmatrix}
\end{align*}
\]

where \(L_{\text{mn}} \) is the self-inductance of the winding \(m \), and \(L_{\text{mn}} \) \((m \neq n, n = 1, 2, 3, 4)\) is the mutual inductance between the winding \(m \) and the winding \(n \). The matrix elements of \(L_{\text{mn}} \) and \(L_{\text{nm}} \) at a specific combination of \(m \) and \(n \) have the same value. Besides, the coupling coefficient \(k_{mn} \) of two windings is defined by

\[
k_{mn} = \frac{L_{mn}}{\sqrt{L_{mn}L_{nm}}} \quad \text{...(5)}
\]

The parameters in Fig. 5 are presented by (7) and (8) [11].
Next, restriction and relationship are given by the symmetry of the circuit. The first one is that the self-inductances of all windings must have the same value \(L_{DAB} \). The second one is that the coupling coefficients of \(k_M, k_{DAB} \) and \(k_c \) are defined as shown in Fig. 4. Then the relationship of the voltage and the current is expressed by (9).

\[
\begin{bmatrix}
 v_1 \\
v_2 \\
v_3 \\
v_4 \\
\end{bmatrix} = L_{DAB} \begin{bmatrix}
 1 & k_c & k_M & k_{DAB} \\
 k_c & 1 & k_{DAB} & k_M \\
 k_M & k_{DAB} & 1 & k_c \\
 k_{DAB} & k_M & k_c & 1 \\
\end{bmatrix} \begin{bmatrix}
 i_1 \\
i_2 \\
i_3 \\
i_4 \\
\end{bmatrix}
\]

The inductance values in Fig. 5 are presented by (10)-(13)

\[
L_{e_{12}} = L_{e_{34}} = \frac{L_{DAB} f(k_c, k_{DAB}, k_M)}{2k_M k_{DAB} + k_c - k_M^2 + k_{DAB}^2 + k_M^2 + 2k_c k_{DAB}}
\] (10),

\[
L_{e_{14}} = L_{e_{23}} = \frac{L_{DAB} f(k_c, k_{DAB}, k_M)}{2k_M k_{DAB} + k_c - k_M^2 + k_{DAB}^2 + k_M^2 + 2k_c k_{DAB}}
\] (11),

\[
L_{e_{13}} = L_{e_{24}} = \frac{L_{DAB} f(k_c, k_{DAB}, k_M)}{2k_M k_{DAB} + k_c - k_M^2 + k_{DAB}^2 + k_M^2 + 2k_c k_{DAB}}
\] (12),

\[
L_{e_{12}} = L_{e_{34}} = \frac{L_{DAB} f(k_c, k_{DAB}, k_M)}{2k_M k_{DAB} + k_c - k_M^2 + k_{DAB}^2 + k_M^2 + 2k_c k_{DAB}}
\] (13).

Where the function \(f(k_c, k_{DAB}, k_M) = \) (14).

When the windings are connected in parallel in each the primary side and the secondary side, the relationship of the voltage and the current is shown in (15) and (16).

\[
\begin{bmatrix}
 v_p \\
v_s \\
\end{bmatrix} = L_{DAB} \begin{bmatrix}
 1 + k_c & k_M + k_{DAB} & \frac{v_p}{dt} \\
 k_M + k_{DAB} & 1 + k_c & \frac{v_s}{dt} \\
\end{bmatrix}
\] (15),

\[
\begin{bmatrix}
 i_p \\
i_s \\
\end{bmatrix} = L_{DAB} \begin{bmatrix}
 \frac{1 + k_c}{2} & \frac{k_M + k_{DAB}}{2} & \frac{d}{dt} \\
 \frac{k_M + k_{DAB}}{2} & \frac{1 + k_c}{2} & \frac{d}{dt} \\
\end{bmatrix}
\] (16),

where \(v_p \) is the input voltage of the primary side, \(v_s \) is the input voltage of the secondary side, \(i_p \) is the equivalent input current of the primary side and \(i_s \) is the equivalent input current of the secondary side.

Moreover, the equivalent self-inductance \(L_p \) of the primary side, the equivalent self-inductance \(L_s \) of the secondary side and the equivalent mutual inductance \(M \) are expressed as in (17) and (18).

\[
L_p = \frac{L_s + L_{DAB}}{2}
\] (17),

\[
M = \frac{k_M + k_{DAB}}{2} L_{DAB}
\] (18).

These equivalent values of \(L_p, L_s \) and \(M \) are useful to analyze the four-winding transformer as a two-winding transformer.

Fig. 6 shows the equivalent circuit of the proposed system. The negative inductance \(-L_{DAB}(1-k_c)/2\) is connected in series to the two-winding transformer, the coupling coefficient of which is \((k_M + k_{DAB})/2\). Therefore, the low \(k_c \) is effective to reduce the leakage inductance. The equivalent coupling coefficient \(k_{eq} \) of the equivalent circuit is presented by (19).

\[
k_{eq} = \frac{k_M + k_{DAB}}{2k_c}
\] (19).

Fig. 7 shows the relationship of \(k_{eq} \) versus \(k_c \). Both of \(k_M \) and \(k_{DAB} \) are fixed values. The equivalent coupling coefficient \(k_{eq} \) is clearly improved with decreasing \(k_c \).

The reason why \(k_{eq} \) is increased with the decrease in \(k_c \) such as (19) and Fig. 7, is reduction of \(L_p \) and \(L_s \) from (17) and (18). Generally, combined inductance of wounding in parallel is lower than self-inductance of each winding because. Besides, the combined inductance is much lower when the magnetic
coupling of the windings is smaller. Whereas, the value of M is decided despite k_c in the system. In consequence, k_{eq}, which corresponds to ratio of M versus the geometric mean of L_p and L_s is improved.

C. Transmission Power and Power Factor of Proposed System

In this section, the transmission power P' and the power factor of the inverter output are formulated from the equivalent circuit shown in Fig. 6. Moreover, the relationship of the power factor and the coupling coefficient k_c is discussed in detail. From (4), (17) and (19), P' is given by (20) with substituting L_p and k_{eq} for L and k.

$$P' = \frac{2V_n^2 V_{out}(k_M + k_{DAB})}{\omega L_{DAB} \left(1 + k_c^2 - (k_M + k_{DAB})^2\right)} \left(\frac{1}{\pi} - \left|\frac{\delta}{\pi}\right|\right)$$

RMS values $I_{p,\text{rms}}$ and $I_{s,\text{rms}}$ of i_p and i_s are shown in (21) and (22).

$$I_{p,\text{rms}} = \sqrt{\frac{1}{2\pi}} \int_{-\pi/2}^{\pi/2} i_p^2 dt$$

$$I_{s,\text{rms}} = \sqrt{\frac{1}{2\pi}} \int_{-\pi/2}^{\pi/2} i_s^2 dt$$

When the input DC voltage V_n is as same as the output DC voltage V_{out}, the power factor $\cos \theta_m$ from the view point of the output of the primary-side inverter is given by (23).

$$\cos \theta_m = \frac{|P'|}{V_n I_{p,\text{rms}}} \sqrt{12\pi (k_M + k_{DAB})^2 \left(1 - \left|\frac{\delta}{\pi}\right|\right)}$$

$$= \sqrt{12\pi^2 (1 + k_c^2 - (k_M + k_{DAB})^2)^2 + 4(1 + k_c^2) (k_M + k_{DAB})^2 (2\pi - 2|\delta|) \delta^2}$$

Fig. 8 shows theoretical curves of $\cos \theta_m$ with the coupling $0 < k_c < 1$. Note that k_M and k_{DAB} are designed to be 0.3 for IPT systems. Lower k_c (higher k_{eq}) makes the systems higher power factor $\cos \theta_m$ over entire load range. Fig. 6 and Fig. 7 also show that lower k_c reduces the equivalent leakage inductance coming from the four-winding transformer. Thus k_c value should be small to improve $\cos \theta_m$.

IV. EXPERIMENTAL RESULTS

A. Test Conditions

The proposed improvement method on the magnetic coupling is experimentally verified. The test is carried out with the system configuration shown in Fig. 4. Table I shows the test conditions and parameters of the elements. Note that input and output voltage is 280 V, and the rated power is 1.1 kW.

Fig. 9 shows the pictures of the two four-winding transformers, which are used for the tests. The rectangular cores are made of 21 ferrite plates (TDK, B67345B4X87). Two four-winding transformers have the same size of cores and the same distance between cores for a fair comparison. The parallel-connected windings on the conventional transformer are wound close to each other in order to increase k_c value. Whereas, the parallel-connected windings on the proposed transformer are separately wound on the outside of coils and closely wound at the center of the coils in order to reduce k_c value without decreasing k_M and k_{DAB}. The coupling coefficients k_c, k_M and k_{DAB} are determined by the dispositions of the wires. The self-inductance L_{DAB} is adjusted by turns of coils and given by (24) using maximum power P_{max}.

$$L_{DAB} = \frac{\pi}{2} \omega^2 P_{\text{max}} \left(\frac{k_M + k_{DAB}}{1 + k_c^2} - k_M^2 - k_{DAB}^2\right)$$

Note that P_{max} should be designed larger than the rated power with a margin of 10%.

B. Parameters of Four-winding Transformers

Table II shows the measured and calculated parameters of the four-winding transformers in Fig. 9. The equivalent values

![Fig. 8. Theoretical curves of power factor given by (23). Only k_c value is changed from 1 to 0. The other coupling coefficients of k_M and k_{DAB} are fixed value in order to verify effect of reducing k_c.](image-url)
The winding in parallel. The coupling
unit
results of inductance and

\[
\begin{equation}
\begin{bmatrix}
16 & 11 & 11 & 17 \\
30 & 57 & 34 & 11
\end{bmatrix}
\end{equation}
\]

are measured by a LCR meter. According to (9), the parameters

\[
\begin{align*}
L_{DAB}, k_c, k_M \text{ and } k_{DAB}
\end{align*}
\]

are averaged from the matrix elements of \(L_{Trans} \).

Table II. Measurement results of inductance and coupling coefficients of conventional transformer and proposed transformer. The matrix elements of \(L_{Trans} \) are measured by a LCR meter. According to (9), the parameters \(L_{DAB}, k_c, k_M \) and \(k_{DAB} \) are averaged from the matrix elements of \(L_{Trans} \).

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Conventional Transformer</th>
<th>Proposed Transformer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coils turns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Primary coils</td>
<td>Secondary coils</td>
</tr>
</tbody>
</table>
| Inductance matrix \(L_{Trans} \) as 4-winding transformer | \(\begin{bmatrix}
34.6 & 33.1 & 11.2 & 11.2 \\
33.1 & 34.6 & 11.1 & 11.1 \\
11.2 & 11.1 & 35.2 & 33.7 \\
11.2 & 11.1 & 33.7 & 35.2
\end{bmatrix} \) [\(\mu \)H] | \(\begin{bmatrix}
57.6 & 30.2 & 17.3 & 14.5 \\
30.2 & 59.9 & 15.5 & 18.0 \\
17.3 & 56.0 & 27.4 & 58.1
\end{bmatrix} \) [\(\mu \)H] |
| Self-inductance \(L_{DSB} \) | Measured value | 34.9 \(\mu \)H | 57.9 \(\mu \)H |
| Coupling coefficient \(k_c \) | Measured value | 0.958 | 0.497 |
| Coupling coefficient \(k_M \) | Measured value | 0.320 | 0.304 |
| Coupling coefficient \(k_{DAB} \) | Measured value | 0.320 | 0.260 |
| Equivalent primary self-inductance \(L_p \) | Measured value | 33.9 \(\mu \)H | 44.4 \(\mu \)H |
| Equivalent secondary self-inductance \(L_s \) | Measured value | 34.2 \(\mu \)H | 43.3 \(\mu \)H |
| Equivalent mutual inductance \(M \) | Measured value | 34.2 \(\mu \)H | 43.3 \(\mu \)H |
| Equivalent coupling coefficient \(k_{eq} \) | Measured value | 0.329 | 0.377 |
| Maximum error of calculated inductances | 1.0 % | 2.4 % |
| Error of calculated coupling coefficient | 0.7 % | 0.2 % |

\(L_p, L_s, M \) and \(k_{eq} \) show both of calculate values and measured values by connecting the windings in parallel. The coupling coefficient \(k_c \) of the proposed transformer is 0.497 weaker than \(k_c \) of the conventional transformer of 0.958. Consequently, \(k_{eq} \) of the proposed transformer improves to 0.377 from 0.329. In addition, the validity of the formulations is also confirmed and all the errors of \(L_p, L_s, M \) and \(k_{eq} \) is below 2.4%.

Note that \(k_M \) and \(k_{DAB} \) of the proposed transformer are weaker than the value of the conventional transformer because the distances of the windings are longer. Equation (19) shows that \(k_{eq} \) is proportional to the sum of \(k_M \) and \(k_{DAB} \). Thus a winding method which only reduce \(k_c \) without decreasing \(k_M \) and \(k_{DAB} \) is required to increase \(k_{eq} \).

C. Operation Waveforms of Proposed System

Fig. 10 shows the operation waveforms at rated load and at light load in the power charging and the discharging operation. The phase difference \(\delta \) is 90 degree at rated load and 15
The output DC current i_{out} shows that power transmitting is achieved at the proposed transformer in both of the power charging and the discharging operation.

D. Characteristics of Input Current, Power Factor and Efficiency

Fig. 11 shows characteristics of the primary current $I_{p_{\text{rms}}}$ versus output power P_{out}. Note that the measurement value is plotted in the graph, and the theoretical characteristics are drawn by the solid line or the dotted lines. According to the $I_{p_{\text{rms}}}$ values at $P_{\text{out}} = 0$ W, the excitation current of the proposed transformer reduces by 25% compared with the conventional values.

Fig. 12 shows characteristics of the input power factor $\cos \theta_i$. The x-axis of Fig. 12 (a) is the phase shift angle δ. The x-axis of Fig. 12 (b) is P_{out}. The measurement value is plotted in the graph, and the theoretical characteristics are drawn by the solid line or the dotted lines. In order to measuring $\cos \theta_i$, I_p and v_p are detected directly. Note that effect of the detection parts are not taken into account in the calculation process of theoretical $\cos \theta_i$ value.

The maximum power factor of the proposed transformer is 17% larger than the conventional transformer. Moreover, $\cos \theta_i$ is improved the entire load range. Thus a low-k_c transformer improves the system efficiency owing to the reduction of the reactive current.
Fig. 13 shows the system efficiency versus P_{out}. The system efficiency is improved over the entire P_{out} with the proposed transformer. The maximum efficiency of the proposed transformer is 87.3% at 1.00 kW in the charging operation. The efficiency of the proposed transformer is improved over entire load range compared to the conventional transformer. In particular, the maximum efficiency of the proposed transformer is 90.3% at 891 W in the discharging operation, which is 3.0% higher than that of the conventional transformer.

V. CONCLUSION

In this paper, a power factor correction method was proposed for the non-resonant IPT system utilizing the dual active bridge converter in order to reduce conduction loss and winding loss. The loose coupling coefficient k_c between two pairs of the primary-side and the secondary-side wires connected in parallel contributed to the power factor correction from the viewpoint of the power supply. Therefore, the low-k_c four-winding transformer improved efficiency because of the strong equivalent coupling coefficient k_{eq} between the primary side and the secondary side.

From the experiment, the maximum power factor of the low-k_c transformer, k_c value of which is 0.497, was improved by 17% compared with the high-k_c transformer because of stronger k_{eq} by 15%. Besides, the maximum efficiency of the low-k_c transformer was improved by 3.0%.

In the future, the proposed method will be introduced to a resonant IPT systems in order to improve efficiency.

REFERENCES