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Abstract—This paper proposes a quick PMSM torque ripple 

reduction method caused by current sensor offsets. The proposed 

method consists of two novel offset compensation methods without 

any motor parameters. The first method estimates the current 

sensor offsets from output voltage references. Meanwhile, the 

second method estimates the current sensor offsets from detected 

output currents. By selecting the compensation method whose 

completion time of the compensation is shorter than the other 

under the different conditions of the PMSM drive, the quick 

compensation is achieved in the proposed method. It contributes 

to the application where the offsets vary in a short time, such as a 

HEV application. The effectiveness of the two compensation 

methods is confirmed by experiments. Moreover, it is confirmed 

that the completion time of the current sensor offset compensation 

is shortened by 12.0 seconds at most by accurately selecting one of 

two proposed methods of the current sensor offset compensation 

method.  

Keywords—Current Sensor Offset Error Compensation, PMSM 

Drive.  

I.  INTRODUCTION 

Recently, hybrid electric vehicles (HEVs) are rapidly 
becoming more common due to an increase in global 
environmental regulations. A HEV is an automobile that has an 
electric power train (EPT) added to its engine [1]-[10]. The EPT 
system consists of a battery, a voltage source inverter (VSI), and 
a permanent magnet synchronous motor (PMSM). The driving 
force of HEV is generated by the EPT. The motor torque ripple 
of the PMSM must be reduced in order to improve the riding 
quality of the HEV. There are several causes of the motor torque 
ripple, e.g. spatial harmonics of a permanent magnet flux of the 
PMSM, a dead-time of the VSI, and motor phase current sensor 
offsets. 

Motor torque ripple reduction methods have been developed 
with focusing on the motor configurations [11]-[19]. In the 
solution with focusing on the motor configuration, an increase 
of the production cost for the motor is inevitable. Thus, 
approaches to the torque ripple reduction based on the motor 
control have also been considered. The torque ripple reduction 
methods which cancel out the effect of a dead-time of the VSI 

have been developed [20]-[22]. However, these methods cannot 
reduce the torque ripple caused by offsets of the motor phase 
currents. Generally, the motor current sensor offsets are 
compensated by adjusting the detected motor phase current 
values to zero during the motor is stopped, i.e. an off-line 
compensation method. However, the off-line compensation 
method cannot compensate the motor current sensor offsets, 
which dependently vary by the variation of temperature during 
the rotation of the motor. 

So far, some on-line compensation methods have been 
proposed to compensate for the current sensor offsets during the 
drive of the motor with no motor parameters [23]-[26]. The 
methods in [23]-[24] compensate the motor current sensor 
offsets based on the output voltage references. Meanwhile, the 
method in [25] directly compensates the motor current sensor 
offsets based on the detected current values. In the HEV 
application, the current sensor offsets vary quickly due to the 
variation of the temperature because the load and speed of the 
PMSM are widely changed by the drive conditions. Therefore, 
the completion time of the current sensor offset compensation is 
required to be as short as possible. However, the completion 
time of the offset compensation has not been discussed yet. In 
particular, the completion time of each compensation method 
depends on the bandwidth of the current regulator in the PMSM 
drive system and the rotational speed. Thus, it is necessary to 
apply the compensation method whose the completion time of 
the compensation is shorter than the other under the different 
conditions of the PMSM drive.  

This paper proposes the quick compensation method using 
two different compensation techniques in order to shorten the 
completion time of the compensation. At first, the two current 
sensor offset compensation methods in [23] and [25] are 
experimentally demonstrated. In addition, the completion time 
of the current sensor offset error compensation of the two 
methods are estimated by the simulation. Based on these results, 
by selecting the method whose completion time of the 
compensation is shorter than the other under particular 
conditions of the PMSM drive, the completion time of the 
compensation will be shortened.  



 

II. TORQUE RIPPLE CAUSED BY CURRENT SENSOR             

OFFSET ERROR 

Fig. 1 shows the general control block diagram for an 
IPMSM drive in the HEV. The current sensors are mounted into 
UVW-phases respectively. In order to simulate the effects of the 
current sensor offsets, the detected output phase current values 
(ius, ivs, iws) are obtained by intentionally adding the current 
sensor offsets (iuoerr, ivoerr, iwoerr) to the true output phase current 
values (iutr, ivtr, iwtr) as  
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In this paper, the errors in the gain of the current sensors are not 
considered and these gains are all regarded as 1.  

The detected d-q- axis current values (ids, iqs) are obtained as 
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by performing the transformation from three-phase to d-q 
rotational frame, where idtr and iqtr are the true d-q- axis current 
values, whereas idoerr and iqoerr are the current sensor offset 
components in d-q- axis currents, respectively. Then, each term 
of (2) is expressed as  
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where θe is the electric angle.  

In the general control system of the IPMSM, the detected d-
q- axis current values shown in (2) is regulated to the d-q- axis 
current reference values (id

*, iq
* ) by the operation of the 

automatic current regulator (ACR). As a result, the true d-q- axis 
current values are transformed from (2) as  
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Then, the torque of the IPMSM is calculated as  

   qtrdtrqdqtra iiLLipT    

where p is the number of pole pairs, φa is the magnet flux linkage, 
and Ld and Lq are the d-q- axis inductances, respectively. By 
substituting (3) and (4) to (5), the influence of the current sensor 
offsets for the motor torque can be observed by (6). 
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The first term of the right-hand side of (6) means the torque 
reference. The second term of the right-hand side of (6) means 
the torque ripple component caused by the current sensor offset 
error. The fundamental frequency of the torque ripple is the same 
as an electric angle frequency of the rotor position of the IPMSM.  

III. COMPENSATION METHODS FOR CURRENT SENSOR OFFSETS 

A. Method I : Compensation for current sensor offsets by 

using output voltage references [23] 

Fig. 2 shows the control block diagram of the compensation 
method for the current sensor offsets by using output voltage 
references [23]. When the detected output phase currents have 
the current sensor offsets (iuoerr, ivoerr, iwoerr), the voltage offsets 
occur in the output voltage references in order to cancel these 
sensor offsets, i.e. by the operation of the ACR. Therefore, the 
polarities of the current sensor offsets and the offsets in the 
voltage references (v*

uoff, v*
voff, v*

woff) are opposite. The method I 
indirectly estimates the current sensor offsets from the voltage 
references by using this relationship.  

Fig. 3 shows the calculation processes of the offsets from the 
voltage references. First, by applying discrete Fourier transform 
(DFT) to the inverter output voltage reference, the DC voltage 
reference is calculated as  
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Fig. 1. General control block diagram for IPMSM drive in HEV. 
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where Nsample is the number of sampling during one period of the 
electric angle frequency. Then, by applying the moving average 
filter (MAF) to the calculation results of (7), the offsets in the 
voltage references are calculated. The reason of using MAF is to 
suppress the variation of the calculation results of the offsets in 
the voltage references, which occur when the torque reference 
or the rotational speed reference is changed.  

Fig. 4 shows the estimation process of the method I for the 
current sensor offsets. The current sensor offsets are estimated 
by subtracting the offsets in the voltage references, which is 
multiplied by an integral gain for the offset estimation, from the 
previous values of the estimated current sensor offsets as  


*
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where, α is the integral gain for the offset estimation. Finally, by 
subtracting the estimated current sensor offsets from the 
detected output phase current, the compensation for the current 
sensor offsets is finished.  

B. Method II : Compensation for current sensor offsets by 

using detected output currents [25] 

Fig. 5 shows the control block diagram of the compensation 
method for current sensor offsets by using detected output 
currents. The method II directly estimates the current sensor 
offsets from the detected output currents by using the multistage 
DFTs. 

Fig. 6 shows the estimation process of the method II for the 
current sensor offsets. By applying the multistage DFTs on the 
detected output phase currents, the current sensor offsets can be 
directly estimated from the detected output phase currents. The 
calculation process of each DFT is same as the method I, shown 
as (7). 

IV. SIMULATION AND EXPERIMENTAL RESULTS 

Table I shows the motor parameters of the IPMSM for the 
test. In order to confirm the validities of the method I and method 
II, simulations are run under the same parameters.  

Fig. 7 shows the simulation results of method I at the 
different rotational speeds. At the low rotational speed of 300 
r/min., the completion time of the offset error compensation is 
19 s. On the other hand, at high rotational speed of 750 r/min., 
the completion time is 8 s. in the high-speed region, the 
completion time is shorter than the completion time of 300 r/min.  
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Motor parameters

Pn = 5.5 [kW]

Nn = 1500 [r/min]

Vn = 400 [Vrms]
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Pairs of poles = 3

Ra = 215 [mΩ]
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Fig. 2. Control block diagram of method I for compensating current sensor offsets by using output voltage references. 
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Fig. 3. Calculation processes for offset in voltage references. 
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Fig. 4. Estimation process of method I for current sensor offsets. 

 

 



Fig. 8 shows the simulation results of method II at the 
different rotational speeds. At the low rotational speed of 300 
r/min., the completion time of the offset error compensation is 
5.5 s. On the other hand, at the high rotational speed of 750 
r/min., the completion time is 14 s, longer than the completion 
time of 300 r/min. It is confirmed from Figs. 7 and 8 that the 
completion time of the offset error compensation of the method 
I and method II depend on the rotational speed. Furthermore, the 
completion time characteristics of the method I and method II 
are inversely related.  

Fig. 9 shows the experimental results of the method I in 
steady state at a rotational speed (N) of 750 r/min, the angular 
frequency of ACR (ωci) of 500 rad/s, a d-axis current command 
(id

* ) of 0 A and-q- axis current command (iq
* ) of 4 A. The 

current sensor offsets are preset to iuoerr = 0.7 A, ivoerr = 0.3 A, 
and iwoerr = -1.0 A respectively and the integral gain for error 
estimation (α) is 0.05. The current sensor offsets are estimated 
from the output voltage references and compensated. As a result, 
the torque ripple is reduced by 1.4 Nmp-p by applying the method 
I.  

Fig. 10 shows the experimental results of the method II in a 
steady state at a rotational speed N of 300 r/min, a ωci of 500 
rad/s, a d-axis current command id* of 0 A and q-axis current 
command iq

* of 4 A. The current sensor offsets are preset to iuoerr 
= 1.0 A, ivoerr = -0.6 A, and iwoerr = -0.4 A, respectively. The 
current sensor offsets are estimated from the detected output 
currents and compensated. As a result, the torque ripple is 
reduced by 1.0 Nmp-p by applying the method II.  

Fig. 11 shows the simulation results of the completion time 
of the offset compensation with two methods at the angular 
frequency of ACR (ωci) of 500 rad/s. The horizontal axis of Fig. 
9 is the ratio of the angular frequency of ACR to the electric 
angular frequency of the IPMSM (ωe). In the method I, the 
higher rotational speed is, the shorter the completion time of the 
offset error compensation becomes, because the repetition 
frequency of the estimation and compensation process, shown 
as Figs. 3 and 4, becomes higher when the rotational speed is 
high. On the other hand, the method II has an opposite 
characteristic of the completion time of the compensation 
against the rotational speed compared with the method I. The 
repetition frequency of the estimation process of the method II, 
shown as Fig. 9, also becomes higher when the rotational speed 
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voerrî
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Fig. 5. Control block diagram of method II for compensating current sensor offsets by using detected output currents. 
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Fig. 6. Estimation processes of method II for current sensor offsets. 

TABLE I.  MOTOR PARAMETERS OF IPMSM AND SIMULATION AND 

EXPERIMENTAL CONDITIONS 

Symbol Meaning Value 

Pn Rated motor power 5.5 kW 

Vn Rated voltage of motor 400 Vrms 

In Rated current of motor 20 Arms 

Nn Rated rotational speed 750 r/min. 

p Number of pole pairs 3 

R Winding resistance 0.215 Ω 

Ld d-axis inductance 4.3 mH 

Lq q-axis inductance 10.2 mH 

φa Back EMF constant 0.284 V/rad/s 

id
* d-axis current reference 0 A 

iq
* q-axis current reference 4 A 

iuoerr U-phase current sensor offset error 0.7 A 

ivoerr V-phase current sensor offset error 0.3 A 

iwoerr W-phase current sensor offset error -1.0 A 

ωci Angular frequency of ACR 500 rad/s 

α Integral gain of offset estimator in method I 0.05 A/V 

 



is high. Furthermore, in the method II, the current sensor offsets 
are estimated directly from the detected current values. 
Therefore, when the rotational speed is high, the estimated 
values of the current sensor offsets oscillate and it takes a long 
time for the estimated values to converge. By selecting between 

the method I or method II, whose completion time of the 
compensation under the particular conditions of the PMSM 
drive is short, the completion time of the compensation is 
shortened by up to 12.0 s. 
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(a) N = 300 r/min.                                                                                                  (b) N = 750 r/min.  

Fig. 7. Simulation results of method I at different rotational speeds, ωci = 500 rad/s, id
* = 0 A, iq

* = 4 A, iuoerr = 0.7 A, ivoerr = 0.3 A and iwoerr = -1.0 A. The 

integral gain for error estimation (α) is 0.05.  
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Fig. 8. Simulation results of method II at different rotational speeds, ωci = 500 rad/s, id
* = 0 A, iq

* = 4 A, iuoerr = 0.7 A, ivoerr = 0.3 A and iwoerr = -1.0 A. 

 

 



V. CONCLUSION 

In this paper, two compensation methods for the current 
sensor offset compensation without using the motor parameters 
are experimentally demonstrated. In addition, the completion 
times of the compensation of both methods were also assessed 
and compared by the simulation. By selecting the one of them, 
whose completion time of the compensation is shorter than the 
other depending on the particular conditions of the PMSM drive, 
the torque ripple caused by the current sensor offsets is quickly 
reduced. It was confirmed that the completion time was 
shortened up to 12.0 s by applying the proposed method. It will 
contribute the improvement of a riding quality of the HEV, 
because the proposed method quickly suppress the vibration 
caused by the torque ripple owing to the current sensor offsets 
depending on the temperature.  
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