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This paper proposes a novel feedback control loop based on a damping control in a V/f control in order to stabilize interior 

permanent magnet synchronous motors (IPMSMs) with a long electrical time constant. A problem of the conventional damping 

control is that ignored roots move to the unstable region due to the conventional damping gain K1. In addition, the ignored roots 

are apt to become unstable because of its long electrical time constant. Therefore, a novel method is proposed in order to solve this 

instability problem. In this paper, first, a boundary condition of stable region is derived based on state equation. Then, a novel 

current feedback loop of the current is added to an output voltage command. As experimental results, the motor becomes unstable 

with the conventional damping control under a rated speed of 0.9p.u. and a rated torque of 0.7p.u. Under the common operation 

condition, the motor is stabilized by employing the novel feedback control loop.  
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1. Introduction 

Recently, interior permanent magnet synchronous motors 

(IPMSMs) are widely utilized due to their high efficiency and high 

power density(1)-(6). V/f control is generally employed for 

applications such as pumps and fans, where high dynamic 

performance is not demanded, because of its effectiveness and 

simplicity instead of a sensorless field-oriented-control(7)-(8).  

In case that an open-loop V/f control without any feedback loop 

is applied for an IPMSM, persistent oscillation occurs in motor 

speed. Thus, the control system becomes unstable due to this 

oscillation. Therefore, the employment of the feedback loop of an 

active current is proposed as one of stabilizing methods(9). By 

suppressing the oscillation with this damping control, stable 

operation is achieved. In this method, the parameters of the 

damping control are decided by equations which are acquired from 

second-order state equation. In addition, the parameters of the 

damping control are calculated by an auto-tuning method. With this 

auto-tuning method, the motor parameters are not necessary in 

advance. However, due to the influence of ignored roots, this design 

method still cannot stabilize some IPMSMs because these roots 

move to the right in the s-plane in accordance with the increase of 

the conventional feedback loop gain K1. In addition, the ignored 

roots are apt to become unstable in the long electrical time constant. 

In particular, the electrical time constant of a high-speed motor 

becomes long because of its small winding resistance. Therefore, a 

high-speed motor tends to become unstable based on V/f control 

with the conventional damping control using active current 

feedback.  

In this paper, a novel feedback loop is proposed in order to solve 

the instability problem. The originality of this paper is an additional 

gain K2 which is the gain in the proposed feedback loop in order to 

stabilize the high speed IPMSMs by increasing the winding 

resistance equivalently. The contribution of this paper is that the 

application of the V/f control is enlarged to the long electrical time 

constant IPMSM by adding a feedback loop.  

This paper is organized as follows; first, the conventional 

damping control is introduced. Next, an auto-tuning method for the 

conventional damping control is explained. In addition, the stability 

of the V/f control is analyzed in order to clarify the boundary 

condition of the unstable region with the conventional damping 

control method. Next, the stability analysis is conducted with 

proposed feedback loop. From the experimental results, the 

equivalent resistance gain K2 stabilizes the unstable V/f control 

system.  

2. V/f Control for IPMSM 

2.1 Damping Control Based on V/f Control    Fig. 1 

shows the relation between -frame and dq-frame. The d-axis is 

defined as the direction of the flux vector of the permanent magnet. 

The q-axis is defined as the electro motive force vector. On the other 

hand, the V/f control is implemented on the -frame. The -axis is 

aligned with the direction of the inverter output voltage, whereas 
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Fig. 1. Relation between -frame and dq-frame.  
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the -axis is defined as the -axis delayed by 90 degrees.  

Fig. 2 shows the V/f control block diagram with the conventional 

damping control. The V/f control is based on the -frame. The 

constant oscillation occurs in the high-speed region due to the 

resonance between the inertia of the motor and the inductance when 

the IPMSMs are driven by the open loop V/f control. Thus, the -

axis current, which represents the active component, is utilized in 

order to stabilize the oscillation.  

2.2 Conventional Design Method for Damping Control 

Based on V/f Control    First, in order to analyze the stability of 

the V/f control, the IPMSM model at steady state is linearized. The 

linearized fifth-order state equation, which is expressed by (1) 

below, is derived from the following 4 equations: γδ-axis voltage 

equations (2), relational expression between torque and speed (3), 

relational expression between load angle and speed (4), and 

relational expression between input and output of HPF applied in 

damping control (5).  
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where, i is the -axis current, i is the -axis current, w is the motor 

speed, w* is the command value of motor speed, q is the load angle, 

x is the output of integrator from high pass filter (HPF), p is the 

differential operator, R is the winding resistance, ym is the field flux 

linkage, Vf is the f/v conversion ratio, K1 is the damping gain,  is 

the time constant of HPF, Pf is the number of pole pairs, and J is the 

inertia of the motor. Note that the definition of per unit value of K1 

is a product of rated speed and rated current (rad/sA). Furthermore, 

following approximations are used in the derivation for (1):  

1) product of more than two perturbation (Δ) terms is 0, and  

2) load angle perturbations are small; sin Δq = Δq, cos Δq = 0, 

when Δq is small.  

In addition, L0 and L1 are defined as  
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The state variables are i, i, w, q, and x. Root locus is obtained 

from fifth-order state equation. Note that the variables with 

subscription 0 mean the variables at the operating point.  

Table 1 shows the motor parameters of two IPMSMs. In this 

paper, the stability of the two motors is analyzed. Note that the 

motor with a rated power of 3.7 kW is defined as Motor A, and the 

other is Motor B(10). In addition, electrical time constants %XLd / %R 

and %XLq / %R of Motor B are longer than that of Motor A by 7.6 
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Fig. 2. Block diagram of V/f control based on -frame 

with conventional damping control. 

 

Table 1. Motor parameters of two IPMSMs. 

Motor A Motor B

Rated speed wn

Rated mechanical power Pm 3.7 kW

Field flux linkage ym 0.27 Vs/rad

1800 r/min

14 ARated current In

Winding resistance R 0.69 W

d-axis inductance Ld 6.2 mH

Inertia moment J 0.037 kgm2

Number of pole pairs Pf 3

q-axis inductance Lq 15.3mH

3 kW

0.107 Vs/rad

12000 r/min

17.3 A

0.133 W

2.04 mH

0.0013 kgm2

2

2.24 mH

5.05 38.5

12.5 42.3

Electrical time 

constant %XLd / %R 
Electrical time 

constant %XLq / %R 
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times and 3.4 times.  

Fig. 3 shows the eigenvalue plot of the Motor A when the 

damping gain K1 is varied at rated speed and no load. Note that No. 

1-5 represent eigenvalues of fifth order state equation. In the 

conventional design method, the damping gain K1 is decided to 

become multiple roots of No. 2 and No. 3 in order to suppress the 

overshoot of the motor speed. As shown in Fig. 3, the value of 

0.15p.u. is the optimum value for the damping gain K1. In addition, 

all roots are located in the left half of the s-plane; therefore, the 

system is stable.  

From fifth-order state equation, the approximated second-order 

state equation is derived with the application of the following 

approximations, and expressed by (8):  

1) under no-load condition; q0 = 0, and iδ0 = iγ0 = 0,  

2) under high-speed condition; ω0L >> R, and ω0 >> K1iδ0,  

3) mechanical time constant is sufficiently larger than 

electrical time constant; pΔiγ = pΔiδ = 0,  

4) root of HPF has small influence on the stability; Δx = 0.  
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 ...................... (8) 

It is noted that second-order state equation is derived under the 

condition of high-speed region and no load in order to simplify the 

analysis of the stability because the influence of load is relatively 

smaller than the influence of motor speed(11)-(12).  

From (8), characteristic equation is expressed 
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where s is the complex variable in Laplace transform.  

Then, the damping coefficient  and the natural angular 

frequency wn are expressed by (10) and (11).  
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As mentioned before, the damping gain K1 is set in order to 

become multiple roots of No. 2 and No. 3.  

On the other hand, the cutoff frequency wc of the HPF needs to 

be lower than the natural angular frequency wn in order to suppress 

the oscillation of the motor speed.  

Fig. 4 shows the eigenvalue plot of the Motor A when the 

damping gain K1 is varied under different cutoff frequency wc at 

rated speed and no load. In the figure, the root of No. 5 is on the 

real axis regardless of the damping gain K1 when the cutoff 

frequency is set as 1/20 of the natural angular frequency wn. 

From above considerations, the damping gain K1 and the cutoff 

frequency wc are expressed by (12) and (13).  
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It is noted that the damping coefficient  is set as 1 in (12). 

2.3 Auto-tuning Method for Parameters of 

Conventional Damping Control    In this section, an auto-

tuning method for the conventional damping control is explained. 

In the auto-tuning, the parameters are identified in order to calculate 

the damping gain K1 and cutoff frequency wc based on the equations 

(12) and (13).  

The voltage command v is expressed by  

   
222 .m a q av RI L I wy w    .................................... (14) 

It is noted that the equation (14) is derived when id = 0 control is 

achieved. In addition, Ia = iq under id = 0 control.  

From (14), the field flux linkage ym is identified at the steady 

state by using  

2
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Here, v is the voltage command, 
qL



 is the identified value of 

q-axis inductance, R


 is the identified value of winding resistance, 

Ia is the output current.  
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Fig. 3. Loot locus of fifth-order state equation when damping gain 

K1 is increased at no-load and rated speed with Motor A. 
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Next, the winding resistance R is identified in DC test at a 

standstill as (16).  
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1.5

DC sw d
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V D f T
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I

 
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where D is the duty factor of the u-phase upper arm, and Td is the 

dead-time.  

The reactive power on the dq-axis is expressed by (17) under id 

= 0 control. 

2.dq q aQ L Iw  ................................................................ (17) 

On the other hand, the reactive power on the -axis is expressed 

by (18) 

.Q v i    ..................................................................... (18) 

The reactive power on each axis is corresponded. Therefore, the 

identified q-axis inductance is expressed as (19) from (17) and (18). 
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The natural angular frequency is identified based on the hill-

climbing method by injecting the sinusoidal wave into the speed 

command. The output current becomes the maximum value at the 

natural angular frequency. Therefore, the frequency of the injected 

sinusoidal wave is varied in order to search the maximum value of 

the output current.  

Fig. 5 shows the flowchart of the auto-tuning. First, the winding 

resistance R is identified in DC test at standstill. Then, the motor is 

accelerated up to 0.5p.u. because it is impossible to identify the field 

flux linkage ym and the q-axis inductance Lq at standstill as shown 

in (15) and (19). Next, the q-axis inductance Lq and the field flux 

linkage ym are identified after applying maximum torque per 

ampere (MTPA) control based on the hill-climbing method(13). The 

motor parameters are not necessary in the MTPA control because 

the operation point is searched by the relation of the output current. 

In addition, the natural angular frequency is identified by the 

relation between the frequency of the injected sinusoidal wave and 

the magnitude of the output current based on the hill-climbing 

method.  

Fig. 6 shows the block diagram of the V/f control during the auto-

tuning. From the figure, the motor is accelerated without the HPF 

of the damping control.  

With this auto-tuning for the conventional damping control, the 

Motor A, which is stable with the conventional damping control, is 

stabilized.  

2.4 Unstable Condition with Conventional Damping 

Control    Fig. 7 shows the eigenvalue plot of the Motor B when 

the damping gain K1 is varied at the same condition of rated speed 

and no load. As shown in Fig. 7, the roots of No. 2 and No. 3 are 

multiple roots when the damping gain K1 is 0.05p.u. However, the 

roots of No.1 and No.4 move into the right half of the s-plane. 

Therefore, these roots make the system unstable. 

It is concluded from the above considerations that the Motor B 

becomes unstable due to the roots of No. 1 and No. 4 when the 

damping gain K1 is decided by the conventional design method. It 

is noted that these roots are ignored when the fifth order state 

equation is linearized to second-order state equation.  
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Fig. 7. Loot locus of fifth-order state equation when damping gain 

K1 is increased at no-load and rated speed with Motor B. 
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2.5 Boundary Condition of Conventional Damping 

Control    In this section, the unstable condition with only the 

damping gain K1 is derived. As mentioned before, the analysis is 

conducted at no load condition in order to simplify the analysis of 

the stability. 

First, the fifth-order state equation is linearized into fourth-order 

state equation when the cutoff frequency is much smaller than the 

natural angular frequency of the second-order state equation. Then, 

the characteristic equation is expressed by (20).  

4 3 2
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Here, w0 is the steady state value of the motor speed.  

From the equations (20)–(24) that the coefficients of the fourth-

order characteristic equation are positive regardless of the value of 

the motor parameters. Therefore, the necessary condition of the 

Routh-Hurwitz stability criterion is satisfied. Thus, the unstable 

condition is derived from the Routh table.  

Table 2 shows the Routh table which is acquired from the 

equations (20)–(24). The coefficients of the left end column are 

focused in order to evaluate the stability of the system. The unstable 

condition, where the coefficients b1 and c1 are negative, is expressed 

as (25) and (26).  
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Here, b1
' is the left-side term of the inequality equation (25). 

It is concluded from the inequality equations (25), (26) and 

Tables 1–2, the left-side term are positive when the damping gain 

K1 of 0.15p.u. is designed in the Motor A. On the other hand, b1
', 

which is the left-side term of (26), is negative when the damping 

gain K1 of 0.05p.u. is employed in the Motor B. Therefore, the 

system is unstable. These consequences are corresponded to the 

eigenvalue plots as shown in Figs. 3 and 6. 

Fig. 8 shows the real parts of the roots of No. 1 and 4 when the 

damping gain K1 is varied. The real parts 2,3 of No. 2 and No. 3 

are expressed 

1
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    .............................................................. (27) 

Then, the real parts 1,4 of No. 1 and No. 4 are expressed 
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The real parts of No. 2 and No. 3 decrease proportionally to the 

damping gain K1. On the other hand, the real parts of No. 1 and No. 

4 increase proportionally to the damping gain K1. Therefore, the 

stable condition is limited depending on the damping gain K1. In 

addition, the stable region of the Motor B is smaller than that of the 

Motor A. In particular, the high-speed motor with small winding 

resistance is more apt to become unstable as expressed in (28). It is 

concluded from above considerations that there is unstable 

condition depending on the roots of No. 1 and No. 4. Therefore, a 

novel method is necessary in order to make the roots of No. 1 and 

No. 4 move into left-half of s-plane.  

Table 2. Routh table of fourth order state equation of V/f control 

with only damping gain K1. 
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Fig. 9. Block diagram of V/f control based on -frame with 

proposed feedback loop to output voltage command.  
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3. Proposed Additional Feedback Loop 

3.1 Principle of Stabilizing Method with Additional 

Feedback Loop    Fig. 9 shows the control diagram of the V/f 

control with the novel feedback loop. As shown in Eq. (25), the 

third term in the left-side term of the inequality equation becomes 

larger when the winding resistance increases. Furthermore, the 

negative term, which is the fourth term, becomes smaller when the 

winding resistance increases. In other words, it is possible to 

stabilize the system when the term of the winding resistance is 

increased equivalently. Therefore, a novel feedback loop is added 

to the inverter voltage command v
*. The feedback loop consists of 

an additional gain K2 and the -axis current which is filtered by the 

HPF. Note that the definition of per unit value of K2 is a quotient of 

rated voltage divided by rated current (Ω).  

3.2 Stability Analysis with Additional Feedback Loop  

The stability analysis is conducted under the same procedure in 

section 2.4. The unstable condition is derived from the Routh table. 

It is expressed as  
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where b1
'' is the left-side term of (29).  

It is shown in (29) that the additional gain K2 is added to the 

numerator of the third term in left-side by adding new feedback 

loop. In addition, the denominators of the fourth and fifth terms are 

also increased by the additional gain K2. Therefore, the winding 

resistance is equivalently increased by the additional gain K2 in 

order to stabilize the system.  

Fig. 10 shows the eigenvalue plot when K2 is increased at the 

rated speed and no load. It is noted that the damping gain K1 is 

decided as multiple roots of No. 2 and No. 3. The roots of No. 1 and 

No. 4 move into the left side of s-plane in accordance with the 

increase of the additional gain K2. This stabilization is not 

achievable with only damping gain K1. 

4. Experimental Results 

4.1 Auto-tuning for Conventional Damping Control 

In this section, the effectiveness of the auto-tuning method for 

the conventional damping control is confirmed in the experiment 

with the Motor A. It is noted that the DC test is conducted at 

standstill. In addition, even though the dead-time has not been 

considered in the analysis, the dead-time influence appears as the 

larger winding resistance in the experiment. Therefore, in the 

experiment, the system might become stable even in the unstable 

region in the root locus analysis result. In order to ignore this stable 

region difference between the experimental result and analysis 

result, the other parameters are identified under the condition of a 

rated speed of 0.5p.u. and a rated torque of 0.27p.u.  

Fig. 11 shows the waveform of the DC test. The identified value 

of the winding resistance converges to the nominal value in the 

steady state. In general, winding resistance of a general-purpose 

motor is relatively small. Therefore, the duty ratio is set as 5% in 

order to prevent overcurrent in the test. From the figure, the winding 

resistance is identified with an error of 9.6%.  

Fig. 12 shows each identified parameter and calculated damping 

gain K1. From the figure, the identification and the calculation are 

conducted in 44 s. The frequency of the injected sinusoidal wave is 

varied each 1 Hz in the identification of the natural angular 

frequency. In addition, one period of the sinusoidal wave needs to 

be injected at least. Thus, the injecting time of the sinusoidal wave 

on each frequency is set as 1 s. Therefore, the tuning time of the 

natural angular frequency is relatively long compared with the other 

parameters. 
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Fig. 13 shows the step response before and after the auto-tuning. 

In Fig. 13 (a), the damping gain is set as 0.01p.u. In addition, the 

HPF of the damping control is not utilized. On the other hand, the 

damping gain K1 is set as 0.13p.u. and the cutoff frequency is 1/20 

of the identified natural angular frequency. In the figure, the motor 

speed oscillates when the step speed command is employed before 

applying the auto-tuning. In addition, the steady-state error remains 

in the motor speed because the HPF is not implemented. On the 

other hand, the motor speed follows the command without an 

overshoot. 

Fig. 14 shows the step responses with the optimal damping gain 

and the tuned damping gain. From the figure, the overshoot with 

the tuned damping gain is almost same as the optimal damping gain. 

Through the experimental results, the effectiveness of the auto-

tuning method is confirmed. 

4.2 Stabilization with Additional Feedback Loop    In 

order to confirm the validity of the additional feedback loop, the 

experiment is conducted. It is noted that Motor A which is shown 

in Table 1 is used in the experiment. In addition, inductors of 10 

mH are connected in series in order to evaluate the motor with the 

long time constant.  

Fig. 15 shows the waveforms of , -axis current and U-phase 

current at 0.9p.u. of rated speed and 0.7p.u. of rated torque when 

the damping gain K1 is varied from 0.1p.u. to 0.2p.u. Note that the 

additional gain K2 is set as 0 at this condition. The diverging 

oscillation occurs in , -axis current after the damping gain K1 is 

varied to 0.2p.u. Then, the motor is stopped due to the overcurrent 

detection. Each frequency of the oscillation is 81 Hz and 78 Hz, 

whereas, the frequency which is obtained from the eigenvalue plot 

is 81 Hz. The experimental value agrees with the theoretical value 

with error of 5.5%. As a conclusion, the system with the motor, of 

which electrical time constant is long, easily becomes unstable only 

with the conventional damping gain K1 due to the influence of the 

ignored roots depending on K1.  

Fig. 16 shows the waveforms of , -axis current and U-phase 

current at 0.9p.u. of rated speed and 0.7p.u. of rated torque when 

the additional gain K2 is varied. The system is stabilized by the 

additional gain K2 even under the unstable condition with only the 

damping gain K1. In addition, the current ripple is also suppressed 

by the additional gain K2. 

From the experimental results, the effectiveness of the additional 

feedback loop is confirmed. 

5. Conclusion 

In this paper, the designing method for the conventional damping 

control is explained. In addition, the auto-tuning method is 

introduced for the motor which is stable with the conventional 

damping control. Then, the unstable condition due to the damping 

gain K1 is derived based on the state equation regarding the V/f 

control for IPMSMs. From the unstable condition, it is clarified that 

the high-speed motor, which the electrical time constant is long, is 

apt to be unstable. The validity of the analysis is confirmed by the 

eigenvalue plot and the experiment. In order to solve this instability 

problem, the novel feedback loop is added to the inverter voltage 

command in order to increase the winding resistance. As a result, 

the stable condition is achieved by the additional equivalent 

resistance gain K2 even under the unstable condition with only 

damping gain K1. In the experiment, first, the effectiveness of the 
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Fig. 13 Waveforms of step response before and after auto-tuning 

under 0.9p.u. of rated speed and 0.8p.u. of rated torque. 
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auto-tuning for the conventional damping control is confirmed. 

Next, the effectiveness of K2 is confirmed under 0.9p.u. of rated 

speed and 0.7p.u. of rated torque.  
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