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Abstract— This paper proposes a novel decentralized control 

method and controllers on cells, which communicate with the main 

controller using Bluetooth communication, for a medium voltage 

solid-state transformer (SST) with multiple chopper cells. SST 

requires a considerable number of signal lines between the main 

controller and each cell in order to communicate the amount of 

information such as detected DC voltage, current, fail, and 

commands. The proposed control system with wireless 

communication is effective in reducing the number of signal lines. 

Moreover, the proposed control method allows only low-speed 

communication and uses only a few parameters to be exchanged 

between the main controller and each cell controllers because the 

instantaneous values are not required for the control in the 

proposed method. The validity of the proposed method is 

demonstrated with a 3-kW prototype. From the experimented 

results, the input-current imbalance is reduced from 24.6 % to 

5.46 %, where total harmonic distortion is less than 3%.  

Keywords— solid-state transformer, multi-port converter, 

balancing control, wireless signal communication 

I. INTRODUCTION 

Solid-state transformers (SSTs) have been attracted in the 
field of DC distribution systems as a front-end converter for data 
centers. SST typically consists of multiple small-capacity 
converters connected in series or parallel [1–6]. The advantages 
of the multiple cell topology are; availability of use of low-
voltage devices, scalability for power capacity and voltage. 

The multiple cell topology requires a large number of the 
signal lines between the main controller and each cell. The 
signal lines among cell controllers and the main controller are 
necessary to control the voltages, currents of each cell, and 

overall systems coordinately. A great deal of wire connection 
typically decreases the maintainability of SSTs.  

In order to reduce the number of signal lines, decentralized 
control methods in which each cell independently operates, have 
been proposed in the previous study [7]. These studies have 
improved the maintainability of SSTs. However, there are still 
many signal lines between the cells and the main controller.  
Thus, a further decrease in the signal lines is required for 
maintainability and workability. 

In order to solve the above problems, a distributed control 
method with wireless signal communication has been proposed 
[8–9]. References [8–9] show that high-speed feedback is not 
required for signals such as detected signal lines, control signal 
lines, and gate drive signal lines from the cell controllers to the 
main controller. However, the decentralized control has not 
experimentally demonstrated [8–9].  

This paper experimentally clarifies the proposed 
decentralized control using the wireless signal communication 
for SST with cascaded chopper cells. The new contribution of 
this paper is that the validity of the Bluetooth wireless 
communication is demonstrated for the cell controller in SST 
system even if the Bluetooth wireless communication has long 
delay time. In the rest of the paper, first, the configuration and 
advantages of the SST with the proposed decentralized control 
methods are explained. Second, the operation of the 
decentralized control is described. Finally, the experimental 
results of the operating SST by the wireless communication are 
mentioned. Furthermore, the practical test for the wireless 
communication under the magnetic field from the  power 
converters is verified, as an appendix. 



II. CIRCUIT TOPOLOGY 

Figure 1 shows the circuit configuration of SST with the 
cascaded chopper cells. The SST is operated as three single-
phase AC-DC converters. Each chopper cell consists of the PFC 
converter and the resonant DC-DC converter. The PFC 
converters have a role to obtains the sinusoidal input current and 
unity power factor. The resonant DC-DC converter is employed 
to achieve galvanic isolation and reduction of switching loss by 
zero current switchings (ZCS). The zero current switchings are 
achieved by resonance between the leakage inductance Ls in the 
high-frequency transformer and the resonant capacitor Cs 
connected to the primary side of the transformer. Each MOSFET 
of the high-frequency inverter in the primary side switches at the 
zero-cross of the current by adjusting the resonant frequency and 
the switching frequency. 

III. PROPOSED CONTROL SCHEME 

Figure 2 shows the block diagram of the proposed 
decentralized control with wireless communication [7]. The 
control system is separated into the main controller and the cell 
controllers. 

The main controller calculates the averaged current based on 
the detected current of each phase received from the detection 
circuit. Afterward, the main controller transmits a output voltage 
command Vo

* and averaged current I0 to each cell. To summarize 

the role of the main controller, the main controller is only for 
calculating the averaged value and communicating with each 
cell. Thus, it is possible to employ slow speed microcomputer, 
which is desirable from a cost point of view. The averaged 
current I0 is given by  

 
0

3

u v wI I I
I

+ +
=  (1), 

where I0 is the averaged current of the three-phase current 
calculated every few milliseconds.  

The function of the cell controller in communication with the 
main controller and secondary voltage control with input phase 
current control in the minor-loop. Besides, the secondary 
voltage control scheme employs the droop control and current 
balancing control in order to prevent diffusion of input current 
and power-sharing. 

A. Droop control 

Figure 3 (a) and (b) show the equivalent circuit models of 
SST, focusing on the output of the cells, which are connected in 
parallel at a DC bus. Each cell connected to the DC bus 
individually controls the output voltage with feedback control. 
However, the interactions of the voltage feedback control 
between each cell lead a weak system performance or may drive 

V phase conv.

W phase conv.

Vout

Rout

iL_u

Lu

PFC converter

Vdc_u

+
vin_u

Cconv

+Cout

Lm

LsCs

Vout_uU phase conv.

Cell

Resonant DC-DC converter

f0  =  fsw = 50 kHzfsw = 20 kHz

 
Fig. 1. Solid-state transformer with simple cascaded chopper cells. 
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Fig. 2. Block diagram of proposed decentralized control with wireless communication. 



the system to instability. The imbalance of the output voltage 
causes a rush current. The difference in voltage is caused by two 
reasons; The first reason is a gain error of amplifier for a current 
sensor. The second is the temperature drift of the current sensor 
and the detection circuit. 

In order to solve the above problems, the virtual resistors in 
order to eliminate inrush current are implemented in series to 
each output voltage source by the droop control, as shown in Fig. 
3 (b). In other words, the virtual resistors mitigate the mutual 
interference of the voltage feedback control of each cell in 
exchange for the high-dynamic response and the steady-state 
deviation on the output voltage. The drop voltage of virtual 
resistor Vd_u, Vd_v, Vd_w are given by 
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where Vin is the input rectified voltage, Vout
* is the output voltage 

command. Thus, the controller adds feedforward to this value 
as Vd_comp.  

B. Current balance control 

The droop control prevents uncontrollable current, as 
explained in the previous section. Note that implementing only 
the droop control might result in imbalanced of the input phase 
current in each cell. Thus, the proposed control method is 
employed the input phase current balance control strategy to 
eliminate the current imbalance. As shown in Figure 2, the 
manipulated variables Vc_u, Vc_v, Vc_w are added to the output 
voltage command in order to make the detected peak value of 
the phase current following the averaged current in the input 
phase current balance control. The notable feature of the strategy 
of the input current balance control is that a fast response is not 

required. In other words, high-speed communication and the 
high computing power of the main controller are not necessary. 

Besides, a conventional decentralized system controls the 
current of each cell by the main controller. The conventional 
method requires a fast response. For this reason, only the 
proposed control scheme accepts the inclusion of wireless 
communication. 

IV. STRUCTURE OF EXPERIMENTAL CIRCUIT 

Figure 4 shows the experimental configuration with wireless 
communication. The proposed control method does not require 
high-speed communication between the main controller and the 
cell controllers, as mentioned in chapter III. Note that this 
communication standard is not only Bluetooth specification but 
also several communications technologies such as Wi-Fi, 
ZigBee, or sub-GHz wireless can be used as the wireless 
communication method in cells. 

A. Main controller 

Figure 5 (a) shows a photograph of the main controller for 
the experimental circuit, including decentralized control using a 
wireless module. The main controller consists of DSP, FPGA, a 
bus controller, and three Bluetooth modules (Microchip, 
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Fig.3. Equivalent circuit models of SST focusing on the output of the cells. 
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Fig. 4.Experimental configuration with wireless communication. 



RN4020). The controller transmits output voltage command Vo
* 

and the average value of phase current I0. Moreover, the main 
controller receives each phase current Iu (or Iv or Iw), the main 
controller calculates the average value of phase current by (1). 
The wireless module accepts only one to one communication. 
Hence, three modules are installed on the main controller. The 
number of wireless communication modules on the main 
controller side is reduced when using a wireless communication 
module capable of 1-to-N communication. The communication 
is based on Universal Asynchronous Receiver / Transmitter 
(UART), 115,200 bps. In the proposed control method, a 
general-purpose controller can be applied as the main controller 
because the calculation of the main controller is only (1). Table 
I lists the specification of the wireless module. The main 
controller is applied to the same controller of the cell for 
simplicity.  

B. Cell controller 

 Figure 5 (b) shows a photograph of the cell controller for the 
experimental circuit. The cell consists of a Bluetooth module, a 
detection circuit, a controller, and the main converter. The 
controller controls the output voltage and input current based on 
the received data Vo

* and I0.  

C. Structure of wireless communication 

A data structure of transmitted and received data is five bytes 
per parameter. The proposed method uses two parameters in a 
transmitting process from the main controller to the cell 
controller and one parameter in another transmitting process 
from the cell to the main. Thus, the number of byte per control 
cycle is 45 bytes. The measurement of required time for the 
communication cycle is 270 ms in the condition of section V. 
The cycle is decided by the communication time, the delay time, 
and the processing overhead in the wireless module.  

V. EXPERIMENTAL RESULTS 

In this chapter, the experimental results of the proposed 

control scheme is introduced. Table II lists the experimental 

conditions. 

A. Steady-state 

Figure 6 shows the input current iu, iv, and iw waveforms and 
the output voltage Vo waveform at the steady-state with or 
without the proposed method when Vo

* = 400 V, and P = 1.5 kW. 
The phase current is high-distorted, and power-sharing is 
ununiformed when the droop control and the current balance 

control are disabled in Fig. 6(a). Whereas, each phase current is 
controlled in a sinusoidal shape, and the amplitudes are matched 
in Fig. 6(b). The input current THD of each phase is 3 % or less. 
The input-current imbalance rate is reduced from 24.6 % to 
5.46% compared to without the proposed method. Here, the 
imbalance rate of the input current is defined as 

 0 0 0
current_err

0 0 0

[%] max , , 100u v wI I I I I I

I I I
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 − − −
=  
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B. Transient-response 

Figure 7 shows the input current iu, iv, and iw waveforms and 

the output voltage Vo waveform at the transient-state when the 

output voltage command Vo
* changes from 250 to 400 V. The 

transient response has a delay about one second by wireless 

communication. The overshoot occurs at the change of output 

voltage command on each cell controller. After 1.2 s, the input 

TABLE I. Specification of wireless module. 

Corporation

Communication standard

Product name

Module size

Maximum speed

Allowable transmission distance

Microchip

Bluetooth ver. 4.1

RN4020

13.4 mm × 25.8 mm × 2 mm

240 kbps

20 m
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(a) Main controller.                                                                    (b) Cell controllers and cell converters. 

Fig. 5 Photograph of experimental circuit including decentralized control using wireless module. 

TABLE II. Experimental Conditions. 

Input voltage

Rated output power

DC-link capacitance

Output capacitance

Input inductance
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current converges by the proposed control with wireless 

communication.  

VI. CONCLUSION 

In this paper, the decentralized control method using 
wireless communication is employed for the control system of 
SST. The proposed control system is characterized by the droop 
control and the current balance control. These controls are the 
outer loop of the feedback voltage control. As a result, a simple 
configuration and wireless communication are available when 
the circuit scale is increased by using the cascaded chopper cell. 
In the experimental results of the 3-kW prototype, the input-
current imbalance rate is reduced from 24.6 % to 5.46 %, and 
the input current THD is 3% or less. The compensation for 
delays of the wireless communication will be considered when 
the number of cells further increases. 

APPENDIX 

VII. PLACTICAL TEST FOR WIRELESS COMMUNICATION IN 

POWER CONVERTERS 

In this section, the effect of radiated noise generated by the 
power converters on the wireless communication module, e.g., 
the communication error rate, effective speed, and transmission 
distance, is evaluated. This evaluation is necessary because the 
communication between the main controller and the cell 
controller uses the wireless communication module, which is 
located near the power converter in the proposed circuit. From 
the aforementioned discussion, the wireless communication 
module is placed near the three types of power converters, and 
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Fig. 7. Waveform at the transient response when change output voltage command from 250 V to 400 V 
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the effective communication speed and error rate of 
communication are evaluated.  

Figure 8 shows the outline of the experimental environment 
for measuring the effect of radiated noise from the power 
converters on the Bluetooth module. Note that the experiment 
was conducted using the Bluetooth module RN42 (Microchip). 
Table III lists the specification of wireless module RN42. 

Figure 9 shows the photograph for the experimental 
environment. The three types of converters are placed away 
from the Bluetooth module from 20 cm as a noise source. In 
addition, the Bluetooth communication distance is changed from 
2 m to 8 m to evaluate the effective speed against the 
transmission distance. 

Figure 10 shows the relationship between the effective speed 
and transmission distance. Bluetooth communication operates at 
a communication speed of 250 bit / s to 400 bit / s near power 
converters. Moreover, in the comparison between transmitted 
data and received data, the error rate is 0% under all conditions. 
The experimental results indicate that the communication errors 
do not occur even when the wireless communication module is 
operated nearby 3.2-kW wireless power transfer system, which 
emits much radiation noise, a 1-kW grid-tied inverter, and a 3.7-
kW induction motor. From experimental results, the Bluetooth 
module is suitable for the communication tool of some power 
converters. 
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