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This paper proposes an active power decoupling (APD) method for isolated AC–DC converters used in on-board chargers 

(OBCs). The proposed method achieves power ripple suppression using only a single load-side inductor without an additional 

inductor for APD. An additional small capacitor and one auxiliary switch are introduced to absorb the low-frequency power ripple. 

Analytical expressions for the buffer-voltage control and the duty ratio of the auxiliary switch are derived, and a complete control 

structure combining current control, buffer-voltage control, and feedforward compensation is presented. Simulation results confirm 

that the proposed APD method achieves sinusoidal grid current and significantly reduces output-current ripple in both G2V and 

V2G modes. Experimental results further demonstrate the feasibility of the method by validating the buffer-voltage regulation and 

ripple suppression in a prototype system. 

 

キーワード：アクティブパワーデカップリング，AC-DC コンバータ，オンボードチャージャー，単一インダクタ 

(Keywords, Active Power Decoupling, AC-DC converter, On-board charger, Single Inductor) 

 

1. はじめに 

近年，電気自動車(EV)はバスやトラック等の商用車のみ

ならず自家用車としても普及が進んでいる。自家用車への

給電は主に一般的な住宅にて行うことが想定される。その

ため，国内における住宅への配電系統として通常用いられ

る単相系統から給電を行う車載充電器(OBC)が必要となる。

ここで，単相系統を入力とする OBC では単相 AC-DC 変換

に起因した電力脈動が発生し，電力脈動は車載バッテリが

接続される直流側での電流に脈動を生ずる。脈動を含む電

流でのバッテリ充電はバッテリの劣化を加速させる要因と

なるため，バッテリ長寿命化には電力脈動補償が必要であ

る(1)(2)。 

従来，整流を行う PWM コンバータと絶縁機能を有する

DC-DC コンバータとを組み合わせた OBC での電力脈動補

償は，各コンバータ間の直流リンクに大容量の電解コンデ

ンサを適用し電力脈動を吸収する方式が広く用いられてき

た。しかし，OBC は高温環境となる車載システムであるた

め，温度変化が寿命減少に直結する電解コンデンサの使用は

OBC 自体の信頼性低下を招く。そのため，大容量のキャパ

シタを必要としない電力脈動補償が必要となる。 

大容量のキャパシタを必要としない電力脈動補償方式と

して，アクティブパワーデカップリング(APD)が広く研究さ

れている。APD は小容量のキャパシタで電力脈動の補償を

実現する手法であり，セラミックコンデンサやフィルムキ

ャパシタ等の長寿命なキャパシタの適用が可能である(3)~(9)。

しかし，従来の APD はキャパシタに起因する信頼性向上は

期待できる一方，電力脈動補償のために追加のスイッチン

グ素子や受動素子を複数必要とする。そのため，これまで提

案されているAPD機能付き単相 AC-DC変換回路の多くは，

部品点数の増加や回路構成の複雑化といった課題を有する
(3),(4),(10)~(15)。 

そこで本論文では，小容量キャパシタとスイッチング素

子各 1 個の追加のみで APD を実現する絶縁型 AC-DC コン

バータを提案する。提案回路は負荷側のインダクタを活用

して APD を行うことで， 1 つのインダクタのみで入力側の

力率改善(PFC)と APD を実現することを特徴とする。APD

実現のために追加インダクタを必要としないだけでなく追

加となるキャパシタとスイッチング素子も各 1 個であり，

部品点数の増加を抑制可能である。提案回路においてエネ
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ルギバッファとなるキャパシタ電圧制御に必要な duty を解

析的に導出し，提案回路制御法の妥当性をシミュレーショ

ンにて評価する。また，実機実験によりキャパシタ電圧制御

および提案法の有効性を検証する。 

2. 提案回路構成と制御方式 

〈2･1〉提案回路の特徴  図 1 に提案回路を示す。提案回

路は，単相系統側の LC フィルタ，S1~ S4からなる電流源型

整流器(CSR)，Scとバッファキャパシタ Ccからなるアクティ

ブバッファ(16)，位相シフトコンバータ，および負荷インダク

タから構成される。直流電圧源は負荷となるバッテリを表

し，位相シフトコンバータと直流電圧源との間にされる負

荷インダクタにより負荷電流は誘導性となる。 

〈2･2〉等価回路  提案回路の動作検討を簡略化するた

め，等価回路を用いて制御法の検討を行う。図 2 に，検討に

使用する提案回路の等価回路を示す。等価回路は提案回路

におけるトランス 2 次側回路をトランス 1 次側に換算し，

トランスと 2 次側フルブリッジを省略した回路である。こ

こで，トランス 1 次側に換算した 2 次側回路の各定数は，

トランス巻き数比を用いて以下で表される。 

Load LoadI NI =  ............................................................. (1) 

b /bV V N =  ............................................................... (2) 

2

o o /L L N =  .............................................................. (3) 

ここで，N はトランス巻き数比，ILoadは負荷電流，Vbは負荷

電圧，Lo は負荷インダクタンスを表す。また，ILoad
’，Vb

’，Lo
’はそ

れぞれ 1 次側に換算した負荷電流，負荷電圧，負荷インダク

タンスである。 

〈2･3〉APD を実現するキャパシタ電流制御  提案回路

は，バッファキャパシタ Ccの充放電により入力電力に含ま

れる電力脈動を吸収し APDを実現する。図 3 に，等価回路

におけるバッファキャパシタの充放電経路を示す。誘導性

の負荷電流 ILoad
’により，オン状態の Scを通じてバッファキ

ャパシタを充放電する。ここで，キャパシタ充放電を決定す

るキャパシタ電流 ic の方向は，フルブリッジにより決定さ

れる。 

図 4 に，APD を実現するキャパシタ電流制御のブロック

図を示す。ここで ZOH は離散化によるによるゼロ次ホー

ルドであり，コントローラにてサンプリングした検出値で

あることを意味する。キャパシタの電流指令値 ic
*は，APD

のためにキャパシタが吸収すべき電力脈動とキャパシタの

平均電圧制御に基づき決定される。 

このうち電力脈動に対しては FF 制御を適用し，図 4 に

おけるフィードフォワード(FF)項 ic_FF*により脈動補償を行

う。FF 制御で電力脈動を補償するため，補償対象となる入

力電力脈動成分の理論値の導出が必要となる。提案回路に

おいて，フルブリッジの出力電力 poutは次式で表される。 

*

out Load Load_ZOHp v I=  ..................................................... (4) 

ここで，vLoad
*はフルブリッジの出力電圧指令，ILoad_ZOHは

出力電流 ILoadの検出値である。APD が実現した場合，出力

電力 poutは常に一定の直流量となる。また，系統から入力

される瞬時入力電力 pinは，次式で表される。 

acp acp acp acp

in acp acpsin sin cos2
2 2

V I V I
p V I  =  = +  ......... (5) 

ここで Vacpは系統電圧振幅，Iacpは系統電流振幅，θは系統

電圧の電気角を表す。系統からの入力電力の平均値は，

APD が実現した場合出力電力 poutと一致する。そのため，

(5)式は出力電力 poutを用いて次式に整理される。 

( )in out 1 cos2p p = +  ...................................................... (6) 

ここで，(6)式における第 2 項は入力電力の脈動成分を表

し，APD での補償対象となる。脈動成分の振幅は第 1 項の

入力電力平均値と等しい。キャパシタ電流指令の FF 項
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Fig. 1. Proposed circuit. 
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Fig. 2. Equivalent circuit of proposed circuit.  
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Fig. 3. Current flow of buffer capacitor. 
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Fig.4. Buffer Capacitor Current Controller. 



SPC-26-037 

MD-26-037 

 

ic_ff
*は，(6)式第 2 項で表される脈動成分に基づき次式で表

される。 

* out
c_FF

c_ZOH

cos2
p

i
v

=  ................................................... (7)  

ここで， vc_ZOHはキャパシタ電圧の検出値，θ は系統電圧の

位相である。 

一方，キャパシタ平均電圧は PI 制御により制御される。

キャパシタ電流の脈動成分が(7)式の司令値通りに制御され

る場合，キャパシタ電圧の司令値 vc
*は次式で表される。 

( )
2

* * out
c cave sin 2

2 ac c

p
v V

f C



= −  ................................. (8) 

ここで，Vcave
*はキャパシタの平均電圧指令値，fac は系統周

波数である。本稿では文献[16]の設計法に基づき，キャパシ

タ平均電圧指令値 Vcave
*とキャパシタ容量を設定した。 

キャパシタ電圧指令 vc
*に基づき，キャパシタ電圧を PI 制

御する。ここで PI 制御器の制御帯域は，直流成分のみを制

御するため系統周波数の 2 倍よりも十分小さくなるよう設

定する。本稿では，50 Hz の系統周波数に対して PI 制御器

の帯域を 10 Hzとした。 

〈2･4〉時分割による APD と PFC の実現  提案回路で使

用するインダクタは，負荷電流 ILoad を誘導性にするための

インダクタ Loのみである。ここで，APD を実現するキャパ

シタ電流制御と入力電流の PFC は同じ負荷電流 ILoadを用い

て実現する必要があるため，負荷電流 ILoad を時分割で利用

する。 

図 5 に，1 スイッチング周期中の中間リンク電圧と時分割

方法を示す。1 スイッチング周期は dc，dz，drecの 3 つの期

間に分けられ，1 スイッチング周期の中心を線対称に 5 分割

される。各期間の総和はスイッチング周期と一致するため，

各 duty の関係は次式となる。 

z rec c1d d d= − −  ................................................................ (9) 

ここで，dcはキャパシタ電流制御の duty，drecは PFC に用い

る duty，dzは時分割後に残る期間である。 

drec期間中，負荷側フルブリッジは CSR を介する電流経路

を形成し，系統からの入力電流を制御する。一方，dz期間は

負荷側フルブリッジの上側アームまたは下側アームのみを

導通させることで還流動作を行い，系統及びバッファキャ

パシタは負荷側に電力供給を行わない期間である。本稿の

変調方法では，図 4 に示す 2 回の dz/2 期間のうち，dc期間

の前では上側アームをオン，dc 期間の後では下側アームを

オン状態として還流動作を行う。 

図 6 に，各 duty 計算のブロック図を示す。キャパシタ電

流を制御するスイッチ Scの duty は，キャパシタ電流指令 ic
*

を用いて次式となる。 

*

c
c

dc
ˆ

i
d

I
=  .................................................................. (10) 

ここで， dcÎ は直流リンク電流の推定値である。直流リンク

電流平均値の推定値 dcÎ は，出力電力 poutを用いて次式で表

される。 

out
dc

dc

ˆ p
I

V
=  ......................................................................... (11) 

ここで， dcV は負荷側への出力に寄与しない dz期間を除いた

直流リンク電圧の平均値である。本稿では，直流リンク電圧

の平均値 dcV を次式で定義する。 

*

cave
dc min acp

cave ac

*

p

(1 )
2

z

V
V d V

V V
= −

+
 ...................................... (12) 
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Fig.5. Time-sharing diagram in switching period. 
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Fig. 6. Duty calculation diagram. 
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Fig. 7. Outline of modulation waveform. 
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ここで，dzminは dzの飽和を防ぐためのマージンである。時分割の

残り時間である dzが 0 でリミットされることを防ぎ，入力電流を制

御する時間の不足を防止する。 

一方，系統電流は CSR を介して PFC 動作を行うため，

CSR からフルブリッジに流れる電流のスイッチング周期平

均が全波整流とする必要がある。ここで，PFC 実現に必要と

なる duty drecは次式で表される。 

*

cave
rec zmin *

cave acp

2(1 ) sin
2

V
d d

V V
= −

+
 ............................... (13) 

〈2･5〉PWM 変調方法  APD，PFC にそれぞれ必要な duty

を用いて，各スイッチのパルスを生成する。図 7 に変調の概

形を示す。スイッチ Sc および同期整流のパルス Srec は三角

波キャリアにより変調することで生成する。また，これらの

パルスを用いて台形キャリアを生成する。図 8 に，提案回路

の変調に関するブロック線図を示す。各 duty 計算結果と出

力電圧指令 vLoad
*を用い，各スイッチの制御信号を生成する。

フルブリッジの PWM 制御に用いる duty である d は，出力

電圧指令 vLoad
*を 1 制御周期中の平均直流リンク電圧で規格

化することで生成し，台形キャリアを用いてユニポーラ

PWM 変調を行う。ここで，規格化に用いる平均直流リンク

電圧は，フルブリッジが出力に寄与しない dz 期間を除いた

直流リンク電圧の 1 制御周期における平均値を用いる。dz期

間を除いた 1 制御周期中の平均直流リンク電圧
dcv̂ は，dc，

drecを用いて以下の式で表される。 

dc c c rec ac
ˆ sign( )cv i d v d v= +  ................................................. (14) 

( )dc c c rec c
ˆ sign( )v i d d v= + ............................................. (15) 

V2G 動作時は系統電圧ゼロクロス付近においてフィルタキ

ャパシタ Cf の短絡を防ぐ必要があるため，同期整流ブリッ

ジを停止する期間を設ける。そのため，系統電圧ゼロクロス

付近では平均直流リンク電圧の算出に(15)式を使用し，それ

以外の期間では(14)式を適用する。ここで，キャパシタ電流

指令 ic
*が負の場合，フルブリッジの出力電圧は図 3(a)に示

す負のキャパシタ電圧となる。 

〈2･6〉トランス偏磁を抑制する 2 次側変調  提案回路は

トランスを有するため偏磁を防ぐ必要があり，等価回路と

は異なるパルス生成が必要となる。図 7 に示すトランス印

加電圧波形は，トランスの偏磁を防止するパルスパターン

である。 

トランスに系統電圧が印加される drec期間では，1 スイッ

チング周期毎にトランス 1 次側フルブリッジを反転させる

ことで，トランスの偏磁を防止する。また，キャパシタ電圧

を印加する期間 dc では，期間の中心でパルスの正負を入れ

替える。ここでキャパシタ電圧は変動するため，トランス電

圧時間積に偏りを生じる。キャパシタ電圧変動によるトラ

ンス電圧時間積の偏りを抑制するため，パルスの正負の順

番を毎スイッチング周期で入れ替える。 

〈2･7〉出力電流制御  図 9に，提案回路の負荷電流制

御器を示す。負荷電流制御器は等価回路上の負荷電流 ILoad
’

を制御する。PI 制御器の操作量は出力電圧 vLoad
’で，フルブ

リッジの PWM 制御により出力される。 

ここで，系統電圧とキャパシタ電圧は交流成分を有するた

め，制御器のサンプリング後も値が変動する。そのため，制御器

内で保持している電圧値と回路における電圧値に誤差を生

じ，出力電流制御への外乱となる。ここで，制御器内と回路

との電圧誤差を本稿では制御器誤差電圧 verrorとして定義し，

電圧外乱として扱う。verrorは系統電圧の位相の変化に起因し

て発生するため，系統周波数の 2 倍よりも十分高い制御帯

域を有する制御器を適用し電圧外乱による出力電流への影

響を抑圧する。本稿では，50 Hzの系統周波数に対して 2 kHz

の帯域を持つ PI 制御器を出力電流制御に適用する。 

3. シミュレーション 

表 1 にシミュレーション条件を示す。国内の一般住宅に

おける EV 充電を想定し，単相 200 V 系統からのバッテリ充
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Fig. 8. Modulator diagram. 
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Fig. 9. Current controller of proposed circuit. 
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電(G2V)動作および放電(V2G)動作を確認する。定格出力電

力は 7 kW であり，電力脈動補償に用いるバッファキャパシ

タは 195 µF とする。バッファキャパシタ容量は，従来の直

流リンクに用いられる電解コンデンサの容量と比較して大

幅に小さく，セラミックコンデンサやフィルムキャパシタ

などの長寿命なキャパシタの適用が可能である。 

図 10 に G2V 動作時のシミュレーション結果を示す。系

統電圧および系統電流より，系統電流は力率 1 の正弦波で

あり PFC が実現していることが確認できる。また，キャパ

シタ電圧は指令値に対して遅れ無く追従していることか

ら，キャパシタ電流の FF 制御と PI 制御とを組み合わせた

キャパシタ電圧制御が成立していることが確認できる。出

力電流の平均値は 17.5 A であり，負荷電流制御器により定

格出力電力を実現する出力電流に制御されている。ここで，

出力電流の周波数解析より，出力電流における 100 Hz 成分

の振幅は直流成分の振幅に対して 0.1%の割合であり，APD

が実現していると言える。さらに，励磁電流は直流バイアス

を含んでおらず，トランスの偏磁も抑制されている。 

図 11 に，V2G 動作時のシミュレーション結果を示す。系

統電流は系統電圧との位相差は 180°であり，入力電流の

PFC が機能している。また，キャパシタ電圧制御，出力電流

制御，トランス偏磁についても，G2V 動作と同様に設計通

りの動作である。ここで，V2G 動作における出力電流の周

波数解析より，出力電流における 100 Hz 成分の振幅は直流

成分の振幅に対して 0.09%の割合である。 

4. 実機検証 

提案制御法の実機における基礎検証を目的として，図 2に

示す等価回路と同じ構成の試作器による実機検証を行う。

試作器は，図 2 の等価回路における電圧源負荷を抵抗器及

びインダクタに置き換えた構成である。本稿では試作器に

よる入力電流の PFC，APD，出力電圧制御の基礎検証を目的

とするため，負荷電流制御は行わない。そのため，試作器に

おいて使用する抵抗器及びインダクタは，変換器から見た

負荷電流が電流源として十分扱えるようインダクタンスを

3 mH，抵抗値を 11 にそれぞれ設定した。 

図 12 に，試作器を用いた実機における G2V 動作の実験

結果を示す。図 12(a)より，入力電流はゼロクロス付近にフ

ィルタの共振をもつものの正弦波状に制御されており，力

率改善動作が確認できる。また図 12(b)より，出力電流は系

統電圧のゼロクロス付近以外では一定であり，提案制御の

APD 動作による電力脈動補償が実現できていると言える。

系統電圧 1 周期で平均した出力電圧は，指令値が 96 V であ

るのに対して 99 V であった。出力電圧の誤差要因の一因と

しては，系統電圧のゼロクロス付近で出力電流が一時的に

増大していることが挙げられる。ここで，出力電流平均値と

抵抗値より算出した出力電力は 740 W である。 

5. まとめ 

本論文では，小容量キャパシタとスイッチング素子各 1個

の追加のみで APD を実現する絶縁型 AC-DC コンバータを提

案した。提案回路は AC-DC 変換に必要なインダクタが一つの

Table 1. Simulation conditions of Proposed circuit. 

Parameters Symbol Value 

Input Voltage Vac 200 V 

Grid Frequency fac 50 Hz 

Output Voltage Vb 400 V 

Active Buffer Capacitor Cc 195 μF 

Average Capacitor Voltage Vcave 450 V 

Output Inductor Lo 1429 μH 

Transformer Turn Ratio N 5.0 

Transformer Magnetizing 

Inductance 
LM 1.0 mH 

Sampling Frequency fsample 20 kHz 

Carrier Frequency fsw 100 kHz 

Filter Capacitor 

Capacitance 
Cf 29 μF 

Filter Inductor Inductance Lf 54 μH 
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Fig. 10. Simulation result of Grid to Vehicle operation. 
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みであり，負荷側インダクタを利用することで電力脈動補償を実

現することを特徴とする。提案回路において APD を実現するバ

ッファキャパシタ電圧制御および入力電流制御に必要な dutyの

理論値を導出し，シミュレーションより提案回路および制御方式

の妥当性を確認した。さらに，等価回路と同じ構成をとる試作器

を用いた実機検証より，740 W 出力における提案回路および提

案制御の基礎動作を確認した。今後，実機における系統電圧ゼ

ロクロス付近の動作改善を行う。 
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Fig. 11. Simulation result of Vehicle to Grid operation. 
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(b) APD control result 

Fig. 12. Operation waveforms. 


